K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a, Ta có : \(2^3=8\)

              \(3^2=9\)

Mà \(8< 9\)                 \(\Rightarrow\) \(2^3< 3^2\)

b, Ta có : \(\left(2^3\right)^{2019}=8^{2019}\)

                \(\left(3^2\right)^{2019}=9^{2019}\)

Mà \(8^{2019}< 9^{2019}\)    \(\Rightarrow\) \(\left(2^3\right)^{2019}< \left(3^2\right)^{2019}\)

5 tháng 6 2023

\(\dfrac{7}{19}x\dfrac{8}{23}+\dfrac{7}{19}x\dfrac{15}{23}+1\dfrac{7}{19}\)

\(\dfrac{7}{19}x\left(\dfrac{8}{23}+\dfrac{15}{23}\right)+1+\dfrac{7}{19}\)

=\(\dfrac{7}{19}x1+1+\dfrac{7}{19}\)

\(\dfrac{7}{19}+1+\dfrac{7}{19}=1\dfrac{14}{19}\) = \(\dfrac{33}{19}\)

\(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{3}{21}-\dfrac{17}{32}\)

=  \(\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{1}{7}-\dfrac{17}{32}\)

\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{49}{32}-\dfrac{17}{32}\right)\)

= 1 + 1 + 1 = 3

\(\dfrac{8}{9}x\dfrac{15}{16}x\dfrac{24}{25}x\dfrac{35}{36}x\dfrac{48}{49}x\dfrac{63}{64}\)

\(\dfrac{3}{4}\) *Câu này bạn tự sử dụng gạch nhé!

 

`1,`

`a,`

`7/19 \times 8/23 + 7/19 \times 15/23 + 1 7/19`

`= 7/19 \times 8/23 + 7/19 \times 15/23 + 1 + 7/19`

`= 7/19 \times (8/23 + 15/23 + 1) + 1`

`= 7/19 \times 2 + 1`

`=14/19 + 1`

`= 33/19`

`b,`

`75/100 + 18/21 + 49/32 + 1/4 + 3/21 - 17/32`

`= 75/100 + (18/21 + 3/21) + (49/32 - 17/32) + 1/4`

`= 0,75 + 1 + 1 + 0,25`

`= (0,75 + 0,25) + 1 + 1`

`= 1+1+1=3`

`c,`

`8/9 \times 15/16 \times 24/25 \times 35/36 \times 48/49 \times 63/64`

`=` \(\dfrac{2\times3}{3\times3}\times\dfrac{3\times5}{4\times4}\times\dfrac{3\times4\times2}{5\times5}\times\dfrac{5\times7}{6\times6}\times\dfrac{6\times8}{7\times7}\times\dfrac{7\times9}{8\times8}\)

`= 3/4` (bạn sử dụng gạch, rút gọn các số là được nhé).

14 tháng 10 2023

Đặt \(A=1+5^2+5^4+...+5^{40}\)

\(\Rightarrow25A=5^2+5^4+5^6+...+5^{42}\)

Lấy \(25A-A=\left(5^2+5^4+5^6+...+5^{42}\right)-\left(1+5^2+5^4+...+5^{40}\right)\)

\(\Rightarrow24A=5^{42}-1\)

\(\Rightarrow A=\dfrac{5^{42}-1}{24}\)

17 tháng 10 2023

 

nguyễn thị hương giang, cúm ơn rất nhìu !!

15 tháng 9 2023

a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)

b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)

c) \(27^{40}=3^{3^{40}}=3^{120}\)

\(64^{60}=8^{2^{60}}=8^{120}\)

Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)

10 tháng 10 2024

con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

8 tháng 8 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}>1\)

8 tháng 8 2020

Thank you bạn dcv new ^ ^

2 tháng 1 2024

\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)

Ta thấy: \(2^{61}-2< 2^{61}\)

\(\Rightarrow A< B\)

2 tháng 1 2024

A=2+22+23+...+260

\(\Rightarrow\)2A=22+23+24+...+261

\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)

\(\Rightarrow\)A=261-2

Mà 261-2<261 nên A<B

Vậy A<B

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a. $\frac{3}{-7}=\frac{-27}{63}$

$\frac{-5}{9}=\frac{-35}{63}$

Do $\frac{27}{63}< \frac{35}{63}$ nên $\frac{-27}{63}> \frac{-35}{63}$

$\Rightarrow \frac{3}{-7}> \frac{-5}{9}$

---------

b.

$-0,625=\frac{-625}{1000}=\frac{-5}{8}=\frac{-125}{200}$

$\frac{-19}{50}=\frac{-76}{200}> \frac{-125}{200}$

$\Rightarrow -0,625> \frac{-19}{50}$

c.

$-2\frac{5}{9}=-(2+\frac{5}{9})=\frac{-23}{9}=-(\frac{-23}{-9})$

22 tháng 7 2018

\(\text{a.61 x 23 + 39 x 22}\)

\(=61.22+1+39.22\)

\(=22.\left(61+39\right)+1\)

\(=22.100+1\)

\(=2200+1\)

\(=2201\)

mình chỉ làm được 1 câu thôi

hok tốt

22 tháng 7 2018

61*23+39*22

=(61+39)*22+61

=100*22+61

=2200+61

=2261

25 tháng 7 2023

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

25 tháng 7 2023

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

4 tháng 7 2021

\(8^2=64=32+2\sqrt{16^2}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)

\(=32+2\sqrt{16^2-1}\)

\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)

\(8>\sqrt{15}+\sqrt{17}\)

\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)

\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)

\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)

\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

mik chọn điền

mik lười chép ại đề bài