K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=\left(2k-1-1\right)\left(2k-1+1\right)\left(4k^2-4k+1+1\right)\)

\(=2k\left(2k-2\right)\left(4k^2-4k+2\right)\)

\(=8k\left(k-1\right)\left(2k^2-2k+1\right)⋮8\)

30 tháng 9 2018

\(n^4-1\)

\(=\left(n^2\right)^2-1^2\)

\(=\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)

mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)

30 tháng 9 2018

Phân tích thành nhân tử:

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên

Khi đó:

 \(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

\(=2k\left(2k+2\right)\left(n^2+1\right)\)

\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)

\(=4k\left(k+1\right)\left(n^2+1\right)\)

Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2  \(\Rightarrow4k\left(k+1\right)⋮8\)

                                                                                                            \(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)

                                                                                                     hay  \(n^4-1⋮8\)(với n là số tự nhiên lẻ)

Ta có điều phải chứng minh.

9 tháng 8 2015

A = n^2 ( n+ 3 ) - ( n+ 3 )

     = ( n^2 - 1 )(n+ 3 )

      = ( n+ 1 )(n- 1 )(n + 3)

Vì n lẻ => n = 2k+ 1 thay vào ta có :

   A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)

Luôn luôn chia hết cho 8  mới mọi n lẻ 

=> A chia hết cho 8 

14 tháng 12 2016

a chia hết cho 8

8 tháng 8 2016

Đặt đa thức là M

\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)

\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)

\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)

\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)

Ta có

n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3

\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9

=> M chia hết cho 9

Mặt khác

Vì n là số lẻ nên n - 1 và n+1 là số chẵn

=> (n - 1)(n+1) chia hết cho 8

\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128

=> M chia hết cho 128

Mà (9;128)=1

=> M chia hết cho 9x128=1152 ( đpcm )

8 tháng 8 2016

...??? mk chiuj^^ ^_^

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn

Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)

27 tháng 1 2019

a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)

suy ra \(n^2+n+1\) lẻ

 Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)

suy ra \(n^2+n+1\) lẻ

Bài 8:

a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)

\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)

b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)

\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)

c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)

d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12\cdot2n=24n⋮24\)(đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 6 2024

Lời giải:

Đặt $n=2k$ với $k$ là số tự nhiên. Khi đó:

$10^n-1=10^{2k}-1=1\underbrace{000...0}_{2k}-1$

$=\underbrace{999...9}_{2k}$

$=99\times 10^{2k-2}+99\times 10^{2k-4}+....+99.10^2+99$

$=99\times (10^{2k-2}+10^{2k-4}+...+10^2+1)\vdots 99$

Ta có đpcm.