So sánh
\(\left(20^{2006}+11^{2006}\right)^{2007}\)và \(\left(20^{2007}+11^{2007}\right)^{2006}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha
\(\frac{1}{2007}.\left(\frac{1001}{2006}-2007\right)-\left(\frac{1}{2006}-2007\right).\frac{1001}{2007}\)
\(=\left(\frac{1001}{2007.2006}-\frac{2007}{2007}\right)-\left(\frac{1001}{2006.2007}-\frac{2007.1001}{2007}\right)\)
\(=\frac{1001}{2007.2006}-\frac{1001}{2006.2007}-1+1001\)
\(=-1+1001\)
\(=1000\)
Ta có :
\(\left(20^{2006}+11^{2006}\right)^{2007}=20^{2006.2007}+2.20^{2006}.11^{2006}+11^{2006.2007}\)
\(\left(20^{2007}+11^{2007}\right)^{2006}=20^{2007.2006}+2.20^{2007}.11^{2007}+11^{2007.2006}\)
Vì \(2.20^{2006}.11^{2006}< 2.20^{2007}.11^{2007}\) nên \(\left(20^{2006}+11^{2006}\right)^{2007}< \left(20^{2007}+11^{2007}\right)^{2006}\)
Chúc bạn học tốt ~