giá trị của y biết : 1/x=2/y=3/z và x-y-z=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(xyz)+(xyz)^2+(xyz)^3+...+(xyz)^100
=(-1)+1+(-1)+1+...+(-1)+1
=0
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$
Tương tự:
$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$
$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$
Cộng theo vế các BĐT trên:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$
$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$
Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
1/ \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}vàx+y-z=-21\)
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{-21}{7}=-3\)
-Suy ra: \(\frac{x}{6}=-3\Rightarrow x=-18\)
\(\frac{y}{4}=-3\Rightarrow y=-12\)
\(\frac{z}{3}=-3\Rightarrow z=-9\)
vậy x=-18;y=-12;z=-9
2) a/y=f(x)=x^2-8
\(\Rightarrow\)y= f(3)=3^2-8=1
\(\Rightarrow\)y=f(-2)=(-2)^2-8=-4
vậy f(3)=1;f(-2)=-4
b/y=17=x^2-8
x^2-8=17
x^2=17+8
x^2=25
x^2=5^2
x=5
vậy x=5