a)Tính tổng: S= 15+17+19+21+...+151+153+155
b)Chừng tỏ A= 2+2^2+2^3+...2^20 chia hết cho 3
dấu ^ là số mũ đó
ai làm đùng mình tick cho 3 cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
A,
S=1+4+7+...+79
Khoảng cách giữa 2 số hạng liên tiếp:
4-1=3
Số lượng số hạng của dãy:
(79-1):3 + 1 = 27 (số)
Tổng của dãy:
(1+79):2 x 27 = 1080
B,
S= 15+17+19+21+...+151+153
Khoảng cách giữa 2 số hạng liên tiếp:
153 - 151= 2
Số lượng số hạng:
(153 - 15):2 +1 = 70 (số hạng)
Tổng của dãy:
(15+153):2 x 70 = 5880
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
2
x-2=0
x=0-2
x = -2 hoặc 2
x-5 =4
x= 4+5
x=9 hoặc -9
c,d tương tự
3
số số hạng la (999-1):1+1=999
S1 (999+1)x999:2 =499500
cần giải các câu còn lại ko các câu đó tương tự
Cảm ơn bạn Phạm Thanh Nhàn nhưng bạn ghi câu 2 mình chưa rõ cho lắm. Đề mình ghi là: |x-2| = 0 chứ mình ko ghi x-2=0. Mình mong có thể ghi rõ lại hơn
Câu 1 :
a) S1 = 1+2+3+...+999
Số số hạng trong S1 là 999
S1 = (1+999)x999:2=499500
S1 =499500
b) Số số hạng trong S2 là (2010-10):2+1=1001
S2= (10+2010)x1001:2=1011010
S2=1011010
c) Số số hạng trong S3 là (1001-21):2+1=491
S3=(21+1001)x491:2=250901
S3=250901
d)Số số hạng trong S5 là (79-1);3+1=27
S5=(1+79)x27:2=1080
S5=1080
e) Số số hạng trong S6 là (155-15):2+1=71
S6=(15+155)x71:2=6035
f) Số số hạng trong S7 là (115-15):10+1=11
S7= (15+115)x11:2=715
g) Số số hạng trong S4 là (126-24):1+1=103
S4= (24+126)x103:2=7725
Câu 2:
Ta có : a + 12 chia hết cho 36
a+12 chia hết cho 4,9
+) a+12 chia hết cho 4
Mà 12 chia hết cho 4
Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)
+) a+ 12 chia hết cho 9
Mà 12 ko chia hết cho 9
Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)
Vậy a chia hết cho 4; ko chia hết cho 9
Câu 3 :
a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:
(1000-5):5+1= 200(số)
ĐS: 200 số
b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2
+)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)
Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9
c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)
Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9
+) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)
Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3
+)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn
+)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)
Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3
Nên 102010 -4 chia hết cho 3
Câu 4 :
mik bít làm nhưng buồn ngủ lắm, mai
Mình làm câu b)
\(A=2+2^2+2^3+..+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{19}.3=3\left(2+2^3+...+2^{19}\right)⋮3^{\left(đpcm\right)}\)
b,
A=(2+2^2)+(2^3+2^4)+...+2^20
=6+2^3.6+2^4.6+...2^19.6
=6.(1+2^3+2^4+...+2^19)÷3
Vì 6÷3 nên A÷3 (đmcm)