Cho hình vuông ABCD có AB=10cm, AC=\(\sqrt{156}\) cm, Độ dài cạnh BC là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm
Đặt \(\hept{\begin{cases}AB=x\\AC=y\end{cases}\left(x,y>0\right)}\)
Theo định lí Thales \(\frac{EF}{AB}=\frac{CF}{CA}\Rightarrow\frac{AB-EF}{AB}=\frac{CA-CF}{CA}\)
Hay \(\frac{x-2}{x}=\frac{2}{y}\Leftrightarrow xy=2\left(x+y\right)\left(1\right)\)
Theo định lí Pytagoras: \(AB^2+AC^2=BC^2\)hay \(x^2+y^2=45\left(2\right)\)
Từ (1),(2); ta có hệ phương trình: \(\hept{\begin{cases}xy=2\left(x+y\right)\\x^2+y^2=45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\x^2+2xy+y^2-4\left(x+y\right)-45=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\\left(x+y\right)^2-4\left(x+y\right)-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x^2+y^2-45=0\end{cases}}\)(Vì x,y dương)
\(\Leftrightarrow\hept{\begin{cases}y=9-x\\x^2+\left(9-x\right)^2-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9-x\\x=6\left(h\right)x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\left(h\right)\hept{\begin{cases}x=3\\y=6\end{cases}}\)
Vậy \(AB=3,AC=6\) hoặc \(AB=6,AC=3.\)
Vì DE // AC Theo hệ quảTa lét ta có : \(\frac{DB}{AB}=\frac{DE}{AC}\Rightarrow\frac{AB-AD}{AB}=\frac{DE}{AC}\)
\(\Rightarrow\frac{AB-2}{AB}=\frac{2}{AC}\Rightarrow AB.AC-2AC=2AB\)
\(\Rightarrow AB.AC-2\left(AC+AB\right)=0\)(*)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\)(**)
Từ (*) ; (**) ta có hệ : \(\hept{\begin{cases}AB.AC-2\left(AC+AB\right)=0\\AB^2+AC^2=45\end{cases}}\)
bấm casio nhé, mode 9 _ 1 _ ấn hệ ra _ ''=''