chứng minh đẳng thức sau :
x(x+1)(x+2)=x3+3x2+2x
tìm x biết :
(3x - 2)(4x - 5) - (2x - 1)(6x+2) = 0
thực hiện phép tính :
5x(12x+7) - (3x+1)(20x - 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x
A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10
A= 5x2-3x -x3 +x2 +x3-6x2+3x-10
A= -10
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x
B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3
B= 2x2+x-x3-2x2+x3-x+3
B= 3
Vậy giá trị của biểu thức B ko phụ thuộc vào biến x
C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2
C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2
C= 2
Vậy giá trị của biểu thức C ko phụ thuộc vào biến x
Câu 2: Tìm x:
1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0
=> 12x2 + 8x -12x2 -30x +21x -21=0
=> -x -21 = 0
=> x = -21
Vậy x = -21
2. 5x (12x + 7) - 3x (20x - 5) = -100
=> 60x2 + 35x - 60x2 + 15x +100=0
=> 50x + 100 =0
=> x = -2
Vậy x = -2
4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25
=> 30x-20-15x-6+55-20x-25=0
=> -5x +4 =0
=> x = 4/5
Vậy x = 4/5
Câu 1
a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)
\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)
\(A=-10\)
Vậy biểu thức A không phụ thuộc vào biến x
b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
\(B=3\)
Vậy biểu thức B không phụ thuộc vào biến x
c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)
\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)
C = 2
Vậy biểu thức C không phụ thuộc vào biến x
\(1,\\ a,=2x^2+2x\\ b,=x^2+4x+3-4=x^2+4x-1\\ c,=x^2+4x+4+3x-5=x^2+7x-1\\ 2,\\ a,=3\left(x+y\right)\\ b,=\left(x-3\right)^2\\ c,=7\left(x+y\right)\\ 3,\\ \Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
a, Biến đổi vế trái :
\(VT=x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)=x^3+3x^2+2x\) 2x
b,\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)
\(\Leftrightarrow12x^2-15x-8x+10-\left(12x^2+4x-6x-2\right)=0\)
\(\Leftrightarrow12x^2-23x+10-12x^2+2x+2=0\)
\(\Leftrightarrow12-21x=0\)
\(\Leftrightarrow-21x=-12\)
\(\Leftrightarrow21x=12\)
\(\Leftrightarrow x=\frac{4}{7}\)
c,
a, bạn thêm
Vậy VT=VT(đpcm)
nhé