Giải phương trình: \(5sinx-2=3\left(1-sinx\right).tan^2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(cosx\ne0\)
Đặt \(sinx=t\)
\(\Rightarrow5t-2=3\left(1-t\right).\frac{t^2}{1-t^2}\)
\(\Leftrightarrow5t-2=\frac{3t^2}{1+t}\)
\(\Leftrightarrow\left(5t-2\right)\left(1+t\right)=3t^2\)
\(\Leftrightarrow2t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\frac{1}{2}\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Pt 1.
Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt
Ta có : \(2cos^2x+2\sqrt{3}sinx.cosx+1=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow3cos^2x+sin^2x+2\sqrt{3}sinxcosx=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)^2=3\left(\sqrt{3}cosx+sinx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)\left(\sqrt{3}cosx+sinx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}cosx+sinx=0\\\sqrt{3}cos+sinx=3\end{matrix}\right.\)
Thấy : \(-1\le sinx;cosx\le1\Rightarrow\sqrt{3}cosx+sinx\le1+\sqrt{3}< 3\)
Do đó : \(\sqrt{3}cosx+sinx=0\) \(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=0\)
\(\Leftrightarrow sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}sinx=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\) ( k thuộc Z )
Vậy ...
a) pt <=> - cos2x. tan22x + 3.cos2x=0
<=> \(\dfrac{sin^22x}{-cos2x}\)+ 3cos2x =0
<=> sin22x - 3cos22x = 0
<=> 1 - 4 cos22x = 0
<=> 1 - 4.\(\dfrac{1+cos4x}{2}\)= 0
<=> cos4x = \(\dfrac{-1}{2}\)
\(\sqrt{2}\left(2cos^2x-3sin2x\right)=4cosx.sin2x+2\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(2\sqrt{2}cos^2x+2cosx\right)-3\sqrt{2}sin2x-4cosx.sin2x-2sinx=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-6\sqrt{2}sinx.cosx-4cosx^2.sinx-2sinx=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-2sinx\left(4cos^2x+3\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-2sinx\left(\sqrt{2}cosx+1\right)\left(2\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left(2cosx-4\sqrt{2}cosx.sinx-2sinx\right)\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left[2\sqrt{2}-2\sqrt{2}\left(cosx-sinx\right)^2+2\left(cosx-sinx\right)\right]\left(\sqrt{2}cosx+1\right)=0\)
Đặt \(t=cosx-sinx\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)
\(pt\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{\sqrt{2}}\\\sqrt{2}t^2-t-\sqrt{2}=0\end{matrix}\right.\)
...