Chứng minh
( n3 - 13n ) chia hết cho 6 ( n thuộc Z )
Các bạn giải gấp cho mình câu này nha . Mình đag cần rất gấp .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3-n+24n\)
\(=n\left(n-1\right)\left(n+1\right)+24n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>A chia hết cho 6
Gọi A = n⁵ - n
=>A= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
\(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5}\\\text{5n(n - 1)(n + 1) chia hết cho 5 }\end{matrix}\right.\)
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
2x + 7 chia hết cho x + 1
=> 2x + 2 + 5 chia hết cho x + 1
=> 2.(x + 1) + 5 chia hết cho x + 1
mà 2.(x + 1) chia hết cho x + 1
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5) = {-5; -1; 1; 5}
=> x thuộc {-6; -2; 0; 4}.
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
a+10b chia hết cho 17
=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)
cố định đề bài 2a+3b chia hết cho 17
nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17
hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17
vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra
ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu
chúc học tốt
n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n
Ta có n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 2, 3 và ( 2;3) = 1
Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6