K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

30 tháng 9 2015

Phản chứng rằng tất cả đều đúng. Tích các bất đẳng thức lại cho ta 

\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)>\frac{1}{2}\times\frac{2}{3}\times\frac{1}{8}\times\frac{3}{32}=\frac{1}{256}.\)

Mặt khác, ta có \(\left(a-\frac{1}{2}\right)^2\ge0\to a\left(1-a\right)\le\frac{1}{4}.\) Tương tự \(b\left(1-b\right),c\left(1-c\right),d\left(1-d\right)\le\frac{1}{4}\to\)
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)<\)\(\left(\frac{1}{4}\right)^4=\frac{1}{256},\)  mâu thuẫn.