Giải giúp mình ptrinh này vs ạ
\(\dfrac{\text{sin3x}}{\text{cos2x}} +\dfrac{\text{cos3x}}{\text{sin2x}} = \dfrac{\text{2}}{\text{sin3x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ..
\(\frac{sin3x+sinx+sin2x}{cos3x+cosx+cos2x}=\sqrt{3}\)
\(\Leftrightarrow\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\sqrt{3}\)
\(\Leftrightarrow\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\sqrt{3}\)
\(\Leftrightarrow tan2x=\sqrt{3}\)
\(\Leftrightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)
\(MSC\left(3;4;24\right)=24\)
⇒ \(\dfrac{1}{3}=\dfrac{1\times8}{3\times8}=\dfrac{8}{24}\)
\(\dfrac{1}{4}=\dfrac{1\times6}{4\times6}=\dfrac{6}{24}\)
\(\dfrac{1}{24}\) ( giữ nguyên phân số )
\(A=\dfrac{sinx+sin3x+sin2x}{cosx+cos3x+cos2x}=\dfrac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\dfrac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=tan2x\)
\(A=\frac{sin2x+sin6x+cos7x+cos3x}{sin3x-sinx}=\frac{2sin4x.cos2x+2cos5x.cos2x}{2cos2x.sinx}=\frac{2cos2x\left(sin4x+cos5x\right)}{2cos2x.sinx}\)
\(=\frac{sin4x+cos5x}{sinx}\)
ĐKXĐ: x>=0
\(Q=\dfrac{x-8}{\sqrt{x}+1}=\dfrac{x-1-7}{\sqrt{x}+1}\)
\(=\sqrt{x}-1-\dfrac{7}{\sqrt{x}+1}\)
=\(\sqrt{x}+1-\dfrac{7}{\sqrt{x}+1}-2\)
=>\(Q>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{7}{\sqrt{x}+1}}-2=2\sqrt{7}-2\)
Dấu '=' xảy ra khi \(\left(\sqrt{x}+1\right)^2=7\)
=>\(\sqrt{x}+1=\sqrt{7}\)
=>\(\sqrt{x}=\sqrt{7}-1\)
=>\(x=8-2\sqrt{7}\)
\(y^2=sin2x+cos2x+2\sqrt{sin2x.cos2x}\)
Đặt \(sin2x+cos2x=t\Rightarrow t\in\left[1;\dfrac{1+\sqrt{3}}{2}\right]\)
\(sin2x.cos2x=\dfrac{t^2-1}{2}\)
\(y^2=f\left(t\right)=t+\sqrt{2\left(t^2-1\right)}\)
\(f'\left(t\right)=1+\dfrac{2t}{\sqrt{2\left(t^2-1\right)}}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow y^2\le f\left(\dfrac{1+\sqrt{3}}{2}\right)=\dfrac{\left(1+\sqrt[4]{3}\right)^2}{2}\)
\(\Rightarrow y\le\dfrac{1+\sqrt[4]{3}}{\sqrt{2}}\)