K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

a) \(A=1^2+2^2+3^2+...+100^2\)

\(A=1.1+2.2+3.3+...+100.100\)

\(A=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+100.\left(101-1\right)\)

\(A=1.2-1+2.3-2+3.4-3+...+100.101-100\)

\(A=\left(1.2+2.3+3.4+...+100.101\right)-\left(1+2+3+...+100\right)\)

Đặt \(C=1.2+2.3+3.4+...+100.101\)\(D=1+2+3...+100\)

Ta có:

\(C=1.2+2.3+3.4+...+100.101\)

\(3C=1.2.3+2.3.3+3.4.3+...+100.101.3\)

\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101\left(102-99\right)\)

\(3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)

\(3C=100.101.102\)

\(3C=1030200\)

\(C=343400\)

Ta lại có:

\(D=1+2+3+...+100\)

\(D=\dfrac{100-1+1}{2}.\left(1+100\right)\)

\(D=50.101\)

\(D=5050\)

\(\Rightarrow A=C-D\)

\(\Rightarrow A=343400-5050=338350\)

b) Ta thấy:

\(\left(n-1\right)n\left(n+1\right)\)

\(=\left(n^2-n\right)\left(n+1\right)\)

\(=\left(n^2-n\right)n+n^2-n\)

\(=n^3-n^2+n^2-n\)

\(=n^3-n\)

\(\Rightarrow n^3=\left(n-1\right)n\left(n+1\right)+n\left(1\right)\)

Áp dụng (1) vào B ta có:

\(B=1^3+2^3+3^3+...+100^3\)

\(B=\left(1-1\right)1\left(1+1\right)+1+\left(2-1\right)2\left(2+1\right)+2+...+\left(100-1\right)100\left(100+1\right)\)

\(B=1+2+1.2.3+3+2.3.4+...+100+99.100.101\)

\(B=\left(1+2+3+...+100\right)+\left(1.2.3+2.3.4+...+99.100.101\right)\)

Đặt \(E=1+2+3+...+100\)\(F=1.2.3+2.3.4+...+99.100.101\)

Ta có:

\(E=1+2+3+...+100\)

\(E=\dfrac{100-1+1}{2}.\left(1+100\right)\)

\(E=50.101=5050\)

Ta lại có:

\(F=1.2.3+2.3.4+...+99.100.101\)

\(4F=1.2.3.4+2.3.4.4+...+99.100.101.4\)

\(4F=1.2.3.4+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)

\(4F=1.2.3.4+2.3.4.5-1.2.3.4+...+99.100.101.102-98.99.100.101\)

\(4F=99.100.101.102\)

\(4F=101989800\)

\(F=25497450\)

\(B=E+F\)

\(\Rightarrow B=5050+25497450\)

\(\Rightarrow B=25502500\)

23 tháng 10 2016

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

9 tháng 10 2015

A=1+2+22+…+2100

2A=2(1+2+22+…+2100)

2A=2+22+…+2101

2A-A = A = 2+22+…+2101-(1+2+22+…+2100)

            A = 2+22+…+2101-1-2-22-…-2100

            A = (2-2)+(22-22)+…+(2100-2100)+2101-1

            A = 0+0+…+0+2101-1

            A = 2101-1

B=3-32+33-34+…+299-3100

3B = 3(3-32+33-34+…+299-3100)

3B = 32-33+34-…-299+3100-3101

3B+B = 4B = 3-32+33-34+…+299-3100

         4B =(3-32+33-34+…+299-3100)+(32-33+34-…-299+3100-3101)

         4B =3-32+33-34+…+299-3100+32-33+34-…-299+3100-3101

         4B =3+(32-32)+(33-33)+(34-34)+…+(299-299)+(3100-3100)-3101

        4B =3+0+0+0+....+0-3101

         4B =3-3101

           B = (3-3101)/4

29 tháng 7 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)

\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)

\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)

3 tháng 10 2017

\(A=1+2+2^2+...+2^{100}\)

\(2A=2+2^2+2^3+..,+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

\(B=\)\(3-3^2+3^3-...-3^{100}\)

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)