\(CM:a^2+b^2+ab+2>0,\forall a,b\in R\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
Ai hack nick mình thì trả lại đi !!!
nick :
- Tên: Vô danh
- Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
- Địa chỉ: Huyện Điện Biên - Điện Biên
- Điểm hỏi đáp: 112SP, 0GP
- Điểm hỏi đáp tuần này: 47SP, 0GP
- Thống kê hỏi đáp
Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn
Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick
Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !
LInk : https://olm.vn/thanhvien/lehoangngantoanhoc
a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)
b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)
c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)
d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)
e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)
b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)
c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)
e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)
f) Có một số thực \(x\) mà \(x^2+x+1>0\) (mệnh đề đúng)
a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)
b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)
c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)
e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
\(a^2+b^2+ab+2=a^2+2.\dfrac{1}{2}ab+\dfrac{b^2}{4}+\dfrac{3b^2}{4}+2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2\)
Do : \(\left\{{}\begin{matrix}\left(a+\dfrac{b}{2}\right)^2\ge0\\\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)\(\Rightarrow\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2>0\)