Chứng minh các đẳng thức sau:
a,\(\frac{x-2}{-x}\)=\(\frac{2^3-x^3}{x\left(x^2+2x+4\right)}\)(xkhác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2^3-x^3}{x\left(x^2+2x+4\right)}=\frac{\left(2-x\right)\left(4+2x+x^2\right)}{x\left(4+2x+x^2\right)}=\frac{2-x}{x}\)\(=-\frac{2-x}{-x}=\frac{-\left(2-x\right)}{-x}=\frac{-2+x}{-x}=\frac{x-2}{-x}\)(đpcm)
\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)
- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)
\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)
\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)
\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)
\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)
Mấy câu này bạn nhân chéo là được, sử dụng biến đổi tương đương nhé ! Mình làm mẫu câu a)
Cách 1 :\(\frac{3y}{4}=\frac{6xy}{8x}\) \(\Leftrightarrow3y\cdot8x=6xy\cdot4\)
\(\Leftrightarrow24xy=24xy\) ( đúng )
Do đó : \(\frac{3y}{4}=\frac{6xy}{8x}\)
Cách 2 : Rút gọn 1 biểu thức : Ta có : \(\frac{6xy}{8x}=\frac{6y}{8}=\frac{3y}{4}=VT\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
a) \({\left( {2x + 1} \right)^4} = {\left( {2x} \right)^4} + 4.{\left( {2x} \right)^3}{.1^1} + 6.{\left( {2x} \right)^2}{.1^2} + 4.\left( {2x} \right){.1^3} + {1^4} = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\)
b) \(\begin{array}{l}{\left( {3y - 4} \right)^4} = {\left[ {3y + \left( { - 4} \right)} \right]^4} = {\left( {3y} \right)^4} + 4.{\left( {3y} \right)^3}.\left( { - 4} \right) + 6.{\left( {3y} \right)^2}.{\left( { - 4} \right)^2} + 4.{\left( {3y} \right)^1}{\left( { - 4} \right)^3} + {\left( { - 4} \right)^4}\\ = 81{y^4} - 432{y^3} + 864{y^2} - 768y + 256\end{array}\)
c) \({\left( {x + \frac{1}{2}} \right)^4} = {x^4} + 4.{x^3}.{\left( {\frac{1}{2}} \right)^1} + 6.{x^2}.{\left( {\frac{1}{2}} \right)^2} + 4.x.{\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} = {x^4} + 2{x^3} + \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{1}{{16}}\)
d) \(\begin{array}{l}{\left( {x - \frac{1}{3}} \right)^4} = {\left[ {x + \left( { - \frac{1}{3}} \right)} \right]^4} = {x^4} + 4.{x^3}.{\left( { - \frac{1}{3}} \right)^1} + 6.{x^2}.{\left( { - \frac{1}{3}} \right)^2} + 4.x.{\left( { - \frac{1}{3}} \right)^3} + {\left( { - \frac{1}{3}} \right)^4}\\ = {x^4} - \frac{4}{3}{x^3} + \frac{2}{3}{x^2} - \frac{4}{27}x + \frac{1}{{81}}\end{array}\)
b) \(\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-\left(x+1\right)\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(x+1\right)\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-2\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)
\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\left(đpcm\right)\)
a) \(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\left(\frac{9}{x\left(x+3\right)\left(x-3\right)}+\frac{x^2-3x}{x\left(x+3\right)\left(x-3\right)}\right)\)
\(:\left(\frac{3x-9}{3x\left(x+3\right)}-\frac{x^2}{3x\left(x+3\right)}\right)\)
\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}:\frac{-x^2+3x-9}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\frac{x^2-3x+9}{x-3}.\frac{3}{x^2+3x-9}\)
\(=\frac{x^2-3x+9}{3-x}.\frac{3}{x^2-3x+9}\)
\(=\frac{3}{3-x}\left(đpcm\right)\)