3×5^2019=5^x+1+5^x+1+5^x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+3)(x+5)=0
=>x+3=0 hoặc x+5=0
=>x=-3 hoặc -5
b) (x-1).5-1=0
=>5x-5-1=0
=>5x-6=0
=>5x=6
=>x=6/5
c)
`1)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)`
`<=>2x^2-5x-12+x^2-7x+10=3x^2-17x+20`
`<=>3x^2-12x-2=3x^2-17x+20`
`<=>5x=22`
`<=>x=22/5`
Vậy `S={22/5}`
`2)x^2(x-2019)=2019-x`
`<=>(x-2019)(x^2+1)=0`
`<=>x-2019=0`
`<=>x=2019(do \ x^2+1>=1>0)`
Vậy `S={2019}`
Từ gt \(\Leftrightarrow2A=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+...+\frac{2}{\left(x+2017\right)\left(x+2019\right)}\)
\(\Leftrightarrow2A=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+....+\frac{1}{x+2017}-\frac{1}{x+2019}\)
\(\Leftrightarrow2A=\frac{1}{x+1}-\frac{1}{x+2019}\)
Với x = 3 thì :
\(2A=\frac{1}{4}-\frac{1}{2022}=\frac{1009}{4044}\)
\(\Rightarrow A=\frac{1009}{8088}\)
Chúc bạn học tốt !
a) \(\left|x-1\right|+\left|x+3\right|=4\left(1\right)\)
+) TH1: Nếu \(x< -3\) thì \(x-1< 0;x+3< 0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=-x-3\)
PT (1) trở thành: \(-x+1-x-3=4\)
\(\Leftrightarrow-2x=6\Leftrightarrow x=-3\left(loại\right)\)
+) TH2: Nếu \(-3\le x< 1\) thì \(x-1< 0;x+3>0\)
\(\Rightarrow\left|x-1\right|=-x+1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(-x+1+x+3=4\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Kết hợp với đk ta được: \(\Rightarrow-3\le x< 1\)
+) TH3: Nếu \(x\ge1\) thì \(x-1>0;x+3>0\)
\(\Rightarrow\left|x-1\right|=x-1;\left|x+3\right|=x+3\)
PT (1) trở thành: \(x-1+x+3=4\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\left(t/m\right)\)
Vậy x nằm trong khoảng \(-3\le x\le1.\)
Mấy bài kia làm tương tự.
2.
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=605x\)(1)
Vì các thừa số ở vế phải của (1) đều không âm nên x không âm. Do đó \(\left|x+1\right|+\left|x+2\right|+...+\left|x+10\right|=\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)\)
\(\Rightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=605x\)
\(\Rightarrow10x+\dfrac{10\left(10+1\right)}{2}=605x\)
\(\Rightarrow55=595x\)
\(\Rightarrow x=\dfrac{55}{595}=\dfrac{11}{119}\)
Vậy x = \(\dfrac{11}{119}\)
\(F=1\dfrac{1}{5}\times1\dfrac{1}{6}\times1\dfrac{1}{7}\times\cdot\cdot\cdot\times1\dfrac{1}{2019}\times1\dfrac{1}{2020}\)
\(F=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times\cdot\cdot\cdot\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(F=\dfrac{6\times7\times8\times\cdot\cdot\cdot\times2020\times2021}{5\times6\times7\times\cdot\cdot\cdot\times2019\times2020}\)
\(F=\dfrac{2021}{5}\)
\(Huyền\) |
\(f=1^1_5\times1^1_6\times1^1_7\times......\times1^1_{2019}\times1^1_{2022}\)
\(f=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times....\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(f=\dfrac{6\times7\times8\times....\times2020\times2021}{5\times6\times7\times.....\times2019\times2020}\)
\(f=\dfrac{2021}{5}\)
\(#Tarus\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)