Cho 10k-1 \(⋮\)19( \(k\inℕ^∗\) )
Chứng minh rằng
a) 102k-1 \(⋮19\)
b) 103k-1 \(⋮19\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(10^{3k}-1=\left(10^k-1\right)\left(10^{2k}+10^k+1\right)⋮19\)
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
10k - 1 chia hết cho 19 nên 10k = 19m + 1
k cho mik nha Hiền xinh đẹp ^_<
a﴿ 10^ k ‐ 1 chia hết cho 19 => 10 k ‐ 1 = 19n ﴾n là số tự nhiên﴿
=> 10^ k = 19n + 1 => 10^ 2k = ﴾10^ k ﴿2 = ﴾19n +1﴿2 = ﴾19n +1﴿﴾19n+1﴿ = 361n 2 + 38n + 1
=> 10 2k ‐ 1 = 361n 2 + 38n + 1 ‐ 1 = 361n 2 + 38n chia hết cho 19 => 10 2k ‐ 1 chia hết cho 19
tk nha bạn
thank you bạn
(^_^)
a) 102k - 1 = 102k -10k + 10k -1 = 10k ( 10k -1 ) + ( 10k -1 ) Chia hết cho 19
b) 103k -1 = 103k - 10k + 10k -1 =10k ( 102k -1 ) + ( 10k -1 ) Chia hết cho 19
a) Vì \(10^k-1⋮19\Rightarrow10^k-1=19n\left(n\inℕ\right)\)
\(\Rightarrow10^k=19n+1\)
\(\Rightarrow10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=361n^2+38n+1\)
\(\Rightarrow10^{2k}-1=361n^2+38n+1-1=361n^2+38n⋮19\)
Vậy.................
b) Ý này bạn làm giống vậy nha