Chứng minh rằng với mọi số nguyên n thoả mãn: \(29^n-28n-1⋮196\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d$ là ƯCLN của $m$ và $n$. Khi đó:
$m=dx; n=dy$ với $x,y$ là 2 số nguyên dương nguyên tố cùng nhau.
\(2^m-1=2^{dx}-1=(2^d)^x-1\vdots 2^d-1\)
\(2^n-1=2^{dy}-1=(2^d)^y-1\vdots 2^d-1\)
Vì $(2^m-1, 2^n-1)=1$ nên $2^d-1=1$
$\Rightarrow d=1$
Tức là $(m,n)=1$
a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)
Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)
b.
- Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)
Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)
\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7
- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)
\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7
Vậy \(2^n+1\) ko chia hết cho 7 với mọi n
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)
Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)
\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)
Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)
Gọi BCNN (28n+18 và 8n+5) là d (d 𝛜N*)
Vì (28n+18) chia hết cho d
→ (56n+36)chia hết cho d
(8n+5) chia hết cho d
→ (56n+35)chia hết chod
→ (56n+36) - (56n+35) chia hết cho d
→ 56n+36 – 56n-35 chia hết cho d
→ 1 chia hết cho d, mà d ϵ N*
→ d=1
BCNN28n+18;8n+5=1
Vậy 28n+18 và 8n+5 là hai số nguyên tố cùng nhau.
ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI
Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)
Quay lại với bài này:
Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)
Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương