K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Đặt A= \(2^{2n+1}\)

Ta có:\(2^{2n+1}\)\(⋮\)2

\(2^{2n+1}\)\(4^n\).2\(\equiv\)2(mod 3)

\(\Rightarrow\)\(\hept{\begin{cases}A⋮2\\A-2⋮3\end{cases}}\)

\(\Rightarrow\)A-2\(⋮\)6

\(\Rightarrow\)A=6k+2

Thay vào:\(2^{2^{2n+1}}\)=\(2^{6k+2}\)\(\equiv\)4(mod 7)

\(2^{2^{2n+1}}\)+3\(\equiv\)4+3(mod7)

                    \(\equiv\)0(mod 7)\(\Rightarrow\)\(2^{2^{2n+1}}\)+3\(⋮\)7

20 tháng 2 2018

cái này mà là toán lớp 1 sỉu

20 tháng 2 2018

mk nhấn nhầm bn ak :)

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

a)Ta có:

\(\left(n+5\right)⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)

\(\Rightarrow6⋮\left(n-1\right)\)

Ta có bảng sau:

\(n-1\) -6 -3 -2 -1 1 2 3 6
n -5 -2 -1 0 2 3 4 7
TM TM TM TM TM TM TM TM

b)\(\left(2n-4\right)⋮\left(n+2\right)\)

\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)

\(\Rightarrow8⋮\left(n+2\right)\)

Ta có bảng sau:

n+2 -8 -4 -2 -1 1 2 4 8
n -10 -6 -4 -3 -1 0 2 6
TM TM TM TM TM TM TM TM

c)Ta có:

\(\left(6n+4\right)⋮\left(2n+1\right)\)

\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)

\(\Rightarrow1⋮\left(2n+1\right)\)

Ta có bảng sau:

2n+1 -1 1
2n -2 0
n -1 0

d)Ta có:

\(\left(3-2n\right)⋮\left(n+1\right)\)

\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)

\(\Rightarrow5⋮\left(n+1\right)\)

Ta có bảng sau:

n+1 -5 -1 1 5
n -6 -2 0 4

17 tháng 1 2016

-8(-7)+(-3).(-5)-(-4).9+2(-6)

=35+15-(-36)+(-12)

=74

15(-3)-(-7).(+2)+4.(-6)-7(-9)

=-45-(-14)+ (-24)-(-63)

8

17 tháng 1 2016

n+15 chia het cho n-2

n-2+17 chia het cho n-2

suy ra 17 chia hết cho n-2

n-2-17-1117
n-1513

19

 

mấy cau sau tuong tu

 

24 tháng 1 2016

=>(n2+3n)+(3n+9)+2 chia hết cho n+3

=>n(n+3)+3(n+3)+2 chia hết cho n+3

=>(n+3)(n+3)+2 chia hết cho n+3

Mà (n+3)(n+3) chia hết cho n+3

=>2 chia hết cho n+3

=> n+3 thuộc Ư(2)={1;2;-1;-2}

=>n thuộc {-2;-1;-4;-5}

24 tháng 1 2016

Để A nguyên

=>n2-3n+1 chia hết cho n+1

=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1

=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1

Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 thuộc Ư(1)={1;-1}

=>n thuộc {0;-2}