Tính GTLN của A=\(\sin\alpha+\cos\alpha\left(0<\alpha<90\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)
\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)
( sin a + cos a )^2 = (7/5)^2
=> sin^2 a + cos^2a + 2.sina . cos a = 49/25
=> 1 + 2.sin a . cos a = 49/25
=> 2.sin a + cos a = 49/25 - 1 = 24 / 25
( sin a - cos a )^2 = sin ^2 a + cos ^2a - 2. sin a . cos a = 1 - 24/25 = 1/25
=> sin a - cos a = 1/5 (2)
TA có sina + cos a = 7/5 (1)
Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5
=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5
tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)
a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2⋅169=817.
b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinα−cos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)−(tan2α+1).
Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)−(2+1)=3+823(2−1).
\(\text{Áp dụng BĐT bunhiacopxki ta có:}\)
\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le\left(\sin^2\alpha+\cos^2\alpha\right)\left(1+1\right)\)
\(\Leftrightarrow A^2\le1.1\Rightarrow A\le1\)
\(\text{Dấu "=" xảy ra khi: }\sin\alpha=\cos\alpha\)
Vậy................