K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

a, Áp dụng bđt bunhiacôpxki ta có 

\(\left(x+2y+3z\right)^2\le\left(1^2+2^2+3^2\right)\left(x^2+y^2+z^2\right)\)  

\(\left(x+2y+3z\right)^2\le14\left(x^2+y^2+z^2\right)\) 

Mà x+2y+3z=6 nên \(36\le14\left(x^2+y^2+z^2\right)\) 

=> \(x^2+y^2+z^2\ge\frac{18}{7}\)

18 tháng 9 2016

Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18

\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)

Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\) 

Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)

\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)

                                                       \(=\frac{24.9}{18+3}-3=\frac{51}{7}\)

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2

26 tháng 10 2016

Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\) 

\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Áp dụng Bđt Cô si ngược dấu ta có:

\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)

\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)

Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2

20 tháng 9 2017

lam on giup minh voi

22 tháng 6 2023

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Đặt $(x,2y,3z)=(a,b,c)$. Khi đó bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=2$. Tìm GTLN của:

\(S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ac+2b}}\)

------------------------------------

Từ $a+b+c=2$ ta có:

\(S=\sqrt{\frac{ab}{ab+(a+b+c)c}}+\sqrt{\frac{bc}{bc+(a+b+c)a}}+\sqrt{\frac{ca}{ac+(a+b+c)b}}\)

\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{(b+a)(b+c)}}\leq \frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)\)

Cộng theo vế:

\(S\leq \frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{3}{2}\)

Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c$

hay $x=\frac{2}{3}; y=\frac{1}{3}; z=\frac{2}{9}$

30 tháng 8 2019

bài này có trên OLM do a Dw ( incursion_03 ) giải nè.Đề tuyển sinh vào lớp 10 Dak Lak

23 tháng 6 2019

\(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}\)

\(=\frac{xyz}{xy\left(\frac{1}{x}+\frac{1}{y}\right)zx\left(\frac{1}{z}+\frac{1}{x}\right)}=\frac{xyz}{\left(x+y\right)\left(z+x\right)}\)

Tương tự, ta cũng có: \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)}\)\(;\)\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{xyz}{\left(x+y\right)\left(z+x\right)}+\frac{2xyz}{\left(x+y\right)\left(y+z\right)}+\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) ( đpcm )