Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm.
a) Tính BC,ˆB,ˆCBC,B^,C^;
b) Phân giác của góc A cắt BC tại D. Tính BD, CD.
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)
a: BC=10cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chug
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔBAK=ΔBHK
c: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có
KA=KH
AI=HC
Do đó: ΔAKI=ΔHKC
Suy ra: \(\widehat{AKI}=\widehat{HKC}\)
=>\(\widehat{AKI}+\widehat{AKH}=180^0\)
hay I,H,K thẳng hàng
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCDB có
CA,DK là trung tuyến
CA căt DK tại M
=>M là trọng tâm
=>CM=2/3CA=2/3*8=16/3(cm)
A B C F H K
a, Áp dụng Đ. L. py-ta-go vào tg ABC vuông tạo A, có:
BC2=AC2+AB2.
=>BC2=82+62.
=64+36.
=100.
=>BC=10cm.
b, Vì góc BAC+ góc CAF=180o(kề bù)
=>góc CAF=180o-góc BAC
=180o-90o
=90o
Xét tg ABC và tg AFC, có:
AC chung
góc BAC= góc CAF(=90o)
AB=AF(gt)
=>tg ABC= tg AFC(c. g. c)
c, Vì tg ABC= tg AFC(cm câu b)
=>CF=CB(2 cạnh tương ứng)
=>tg CBF cân tại C.
d, Xét tg AHC và tg AKC, có:
góc HCA= góc KCA(2 góc tương ứng)
AC chung
góc AHC= góc AKC(2 góc tương ứng)
=>tg AHC= tg AKC(ch-gn)
=>CH=CK(2 cạnh tương ứng)
=>tg HKC cân tại C.
Ta có: tg HKC cân tại C, tg BFC cân tại C.
=> góc B= góc F= góc CHK= góc CKH.
Mà góc B và góc CHK ở vị trí đong vị, góc F và góc CKH cũng ở vị trí đồng vị.
=>BF//HK(đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
ABCDEF12
a)Theo định lý Pi-ta-go , ta có :
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
=> BC = 10
\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^08^'\)
\(\Rightarrow\widehat{C}\approx90^0-\widehat{B}\approx90^0-53^08^'\approx36^052^'\)
b) AD là phân giác của \(\widehat{A}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}=\frac{90^0}{2}=45^0\)
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{CD+CD}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{3.10}{7}=\frac{30}{7}\)
\(\Rightarrow CD=\frac{4.10}{7}=\frac{40}{7}\)
c) Tứ giác AEDF có \(\widehat{A}=\widehat{F}=\widehat{E}=90^{^0}\)
=> AEDF là hình chữ nhật .
AD là phân giác của \(\widehat{A}\)
=> AEDF là hình vuông .
\(DE\perp AB\) \(AC\perp AB\) => DE // AC
\(\frac{CD}{BC}=\frac{AE}{AB}\) ( đl Ta lét )
=> \(AE=\frac{CD.AB}{BC}=\frac{\frac{40}{7}.6}{10}=\frac{24}{7}\)
Chu vi tứ giác AEDF = \(\frac{24}{7}.4=\frac{96}{7}\)
\(S_{AEDF}=\left(\frac{24}{7}\right)^2=\frac{576}{49}\left(cm\right)\)