Cho x=\(\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}\) .Chứng minh rằng x là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
\(P=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-\sqrt{12}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{2}\cdot\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\left(\sqrt{3}+1\right)}\)
=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}+1\right)}=1\)
Vậy P là một số nguyên
\(Q=\sqrt{\sqrt{5}-1}\left(\sqrt{8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}}-\sqrt{7-\sqrt{20}}\right)\)
\(\Rightarrow\)\(Q^2=\left(\sqrt{5}-1\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}+7-\sqrt{20}-2\sqrt{\left(7-\sqrt{20}\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)\left(8-\sqrt{5}\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{66-23\sqrt{5}+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(49-28\sqrt{5}+20\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)^2+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)^2}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)\right)\)
\(=\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)\)\(=4\)
\(\Rightarrow Q^2=4\) \(\Rightarrow Q\) nguyên
\(A^3=\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)^3\)
\(=\left(5\sqrt{2}+7\right)-\left(5\sqrt{2}-7\right)-3\sqrt[3]{5\sqrt{2}+7}.\sqrt[3]{5\sqrt{2}-7}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}\right)\)
\(=14-3A\)
=> \(A^3+3A-14=0\)
<=> \(\left(A^3-8\right)+\left(3A-6\right)=0\)
<=> \(\left(A-2\right)\left(A^2+2A+7\right)=0\)
<=> A = 2 vì A^2 + 2A + 7 = (A+ 1) ^2 + 6 > 0
Do đó A là 1 số nguyên.
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)
a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)
c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)
1.
= -(13 + 3 căn7 ) / 2 + -(7 + 3 căn7 ) / 2
= -7 + 3 căn7
\(x=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}-\sqrt[3]{2\sqrt{2}-3.2+3\sqrt{2}-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\sqrt{2}+1=2\)
Vậy , x là số nguyên .