K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\dfrac{sin2x+sinx}{\dfrac{1}{2}\cdot cosx\cdot sin2x+sin2x}=\dfrac{sinx\left(2cosx+1\right)}{sin2x\left(\dfrac{1}{2}cosx+1\right)}\)

\(=\dfrac{2cosx+1}{2\cdot cosx\cdot\left(\dfrac{1}{2}cosx+1\right)}\)

7 tháng 10 2017

Giải bài 8 trang 155 SGK Đại Số 10 | Giải toán lớp 10

NV
17 tháng 5 2020

\(A=\frac{2sin2x-2sin2x.cos2x}{2sin2x+2sin2x.cos2x}=\frac{1-cos2x}{1+cos2x}=\frac{2sin^2x}{2cos^2x}=tan^2x\)

\(B=\frac{2cos4x.sinx}{2cos4x}=sinx\)

Câu C ko dịch được đề

6 tháng 5 2022

`A=[sin x + sin 2x + sin 3x]/[cos x + cos 2x + cos 3x]`

`A=[2sin2x.cosx+sin2x]/[2cos2x.cosx+cos2x]`

`A=[sin2x(2cosx+1)]/[cos2x(2cosx+1)]`

`A=tan 2x`

\(A=\dfrac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)

\(ĐK\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne\dfrac{1}{2}\end{matrix}\right.\)  \(\Leftrightarrow\)  \(A=\dfrac{sinx+sin3x-sin2x}{cosx+cos3x-cos2x}\)     

\(\Leftrightarrow\)  \(\left\{{}\begin{matrix}=\dfrac{2sin2x.cosx-sin2x}{2cos2x.cosx-cos2x}\\=\dfrac{sin2x\left(2cosx-1\right)}{cos2x\left(2cosx-1\right)}\end{matrix}\right.\)  \(\Rightarrow\) \(A=tan2x\)

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

27 tháng 9 2023

`A=[sin x+sin 2x+sin 3x]/[cos x+cos 2x+cos 3x]`

`A=[(sin x+sin 3x)+sin 2x]/[(cos x+cos 3x)+cos 2x]`

`A=[2sin 2x.cos (-x)+sin 2x]/[2cos 2x.cos (-x)+cos 2x]`

`A=[sin 2x(2cos(-x)+1)]/[cos 2x(2cos(-x)+1)]`

`A=[sin 2x]/[cos 2x]=tan 2x`.

NV
1 tháng 5 2020

\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=cos^2x-\frac{cos3x}{cosx}+sin^2x+\frac{sin3x}{sinx}\)

\(=1+\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=1+\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=1+\frac{2sin2x}{sin2x}=3\)

NV
1 tháng 8 2021

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)