K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

DD
22 tháng 6 2021

Dựng hình bình hành \(ABEC\).

Khi đó \(E\in DC\).

Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).

Kẻ \(BH\perp DE\)

Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\)

\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)

Có ai biết đổi tên cho mình hông?

2 tháng 2 2019

Xét ∆ ADB vuông tại A có: AH là đường cao ứng với cạnh huyền BD

⇒ A H 2 = HB. HD = 8.18  HA = 12 (cm) (hệ thức lượng trong tam giác vuông)

Xét ADC vuông tại D có: DH là đường cao ứng với cạnh huyền AC

⇒ H D 2 = H A . H C ⇒ 18 2 = 12 H C => HC = 27 (cm) (hệ thức lượng trong tam giác vuông)

Ta có: AC = AH + HC = 12 + 27 = 39 cm

BD = BH + HD = 8 + 18 = 26cm

S A B C D = A C . B D 2 = 26.39 2 = 507 c m 2

Đáp án cần chọn là: D

8 tháng 1 2019

Qua B vẽ đường thẳng song song với AC, cắt DC ở E. Gọi BH là đường cao của hình thang. Ta có BE // AC, AC BD nên BE BD

Áp dụng định lý Pytago vào tam giác vuông BDH, ta có: B H 2 + H C 2 = B D 2

12 2 + H D 2 = 15 2 ⇒ H D 2 = 81 => HD = 9cm

Xét tam giác BDE vuông tại B:

B D 2 = D E . D H ⇒ 15 2 = D E . 9 ⇒ D E = 25 c m DE = 25cm

Ta có: AB = CE nên AB + CD = CE + CD = DE = 25cm

Do đó S A B C D = 25.12 : 2 = 150( c m 2 )

Đáp án cần chọn là: A

8 tháng 6 2015

Kẻ BK là đường cao của hình thang =>BK =12 
Từ B, kẻ BE // AC => ABEC là hình bình hành và BD vuông góc BE 
Áp ụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 +1/BE2 =1/BK2
=>BE = 20 
Theo định lý Py-ta-go, BD2 +BE2 =DE2 =>DE=25 
Lại có DE= DC+CE=DC+AB 
>>SABCD=(DC+AB) x BK/2=25 x \(\frac{12}{2}\) =150 (cm2)

16 tháng 9 2016

tag58 do - cotg 32do 

NV
5 tháng 7 2021

Kẻ đường cao BE \(\Rightarrow BE=12\)

Pitago tam giác vuông BDE:

\(DE=\sqrt{BD^2-BE^2}=9\left(cm\right)\)

Qua B kẻ đường thẳng song song AC cắt CD kéo dài tại P

Do \(AC\perp BD\Rightarrow BP\perp BD\) hay tam giác BPD vuông tại B

Mặt khác \(\left\{{}\begin{matrix}AB||CD\\AC||BP\end{matrix}\right.\) \(\Rightarrow ABPC\) là hbh

\(\Rightarrow AB=CP\Rightarrow AB+CD=CP+CD=DP\)

Hệ thức lượng tam giác vuông BPD:

\(BD^2=DE.DP\Rightarrow DP=\dfrac{BD^2}{DE}=25\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}BE.\left(AB+CD\right)=\dfrac{1}{2}BE.DP=\dfrac{1}{2}.9.25=112,5\left(cm^2\right)\)

NV
5 tháng 7 2021

undefined

NV
14 tháng 7 2021

Kẻ đường cao góc AE \(\Rightarrow AE=AB\)

Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\) 

\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACD có:

\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)

\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)

\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)

NV
14 tháng 7 2021

undefined