B = 1+\(\frac{1}{2}\)(1+2) +\(\frac{1}{3}\)(1+2+3) + ... +\(\frac{1}{2018}\)(1+2+3+...+2018)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{2018}.\frac{\left(1+2018\right).2018}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2019}{2}=1+\frac{3+4+...+2019}{2}=1+\frac{\left(3+2019\right)2017}{2}=2039188\)
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Lời giải:
\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)
\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
---------------------
Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(\Rightarrow A>1> \frac{3}{4}> B\)
B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}\)
Ta có:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)
\(=1+\frac{1}{\frac{3.2}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2018.2019}{2}}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)
\(=\frac{2}{2}+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)
\(=2\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)=\frac{2.2018}{2019}\)
=> B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}=\frac{2.2018}{\frac{2.2018}{2019}}=2019\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2018}\left(1+2+...+2018\right)\)
\(B=1+\frac{1}{2}\cdot3+\frac{1}{3}\cdot6+...+\frac{1}{2018}\cdot2037171\)
\(B=1+1,5+2+...+1009,5\)
Ta có khoảng cách là 0,5
Số số hạng là : ( 1009,5 - 1 ) : 0,5 + 1 = 2018 ( số )
Tổng B là : ( 1009,5 + 1 ) . 2018 : 2 = 1019594,5
Vậy B = 1019594,5
Với \(n\in N\) ta có \(\frac{1}{n}.\left(1+2+3+.......+n\right)=\frac{1}{n}.\frac{n.\left(n+1\right)}{2}=\frac{n+1}{2}\)
Lần lượt thay vào n=1,2,3,....,2018 ta được:
\(B=1+\frac{2+1}{2}+\frac{3+1}{2}+......+\frac{2018+1}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+..........+\frac{2019}{2}\)
\(=1+\frac{\left(2019+3\right).\left[\left(2019-3\right):1+1\right]}{2}\)
\(=1+\frac{2022.2017}{2}=1+2039187=2039188\)