sưde fryg vbtfv rgr4 vrfg3y bvrfe frvf cb 7edtye3bdrg6fvbfv fcbdỳvfggcgf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt: q1=q2=-1,2.10-6C; r=0,1m; q3=3.10-8C
1)CA=CB=5cm=0,05m => C nằm giữa A,B:
Vì A,B cách đều và q1=q2 nên lực điện chúng tác dụng lên C sẽ bằng nhau FBC=FAC
Bạn có thể dùng biểu thức định luật Coulomb để kiểm tra.
Lực điện tác dụng lên q3 là F=|FBC-FAC|=0
2)CA=4cm=0,04m, CB=6cm=0,06m
FAC=\(k\frac {|q_1q_3|} {AC^2}\)=0,2025N; FBC=\(k\frac {|q_2q_3|} {BC^2}\)=0,09N
<=>F=FAC-FBC=0,1125N
3)CA=6cm=0,06m, CB=8cm=0,08m
Nhận thấy 6,8,10 là ba cạnh một tam giác vuông
FAC=\(k\frac {|q_1q_3|} {AC^2}\)=0,09N; FBC=\(k\frac {|q_2q_3|} {BC^2}\)=0,050625N
<=>F=\(\sqrt {F_{AC}^2+F_{BC}^2}\)≃0,1N
4)CA=12cm=0,12m, CB=2cm=0,02m
FAC=\(k\frac {|q_1q_3|} {AC^2}\)=0,0225N; FBC=\(k\frac {|q_2q_3|} {BC^2}\)=0,81N
<=>F=FBC-FAC=0,7875N
5)CA=CB=AB=10cm=0,1m <=>ABC là một tam giác đều
Vì q1=q2 <=>FAC=FBC=\(k\frac {|q_1q_3|} {AC^2}\)=0,0324
<=>F=\(\sqrt {F_{AC}^2+F_{BC}^2+2F_{AC}F_{BC}cos60}\)=\(\sqrt3F_{AC}\)=0,0324\(\sqrt3\)(N)≃0,056N
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) ; \(\overrightarrow{CB}+\overrightarrow{BA}=\overrightarrow{CA}\) ; \(\overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB}\)
\(\overrightarrow{BA}+\overrightarrow{CB}=\overrightarrow{CA}\) ; \(\overrightarrow{CB}-\overrightarrow{CA}=\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{AB}\)
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) (với M là trung điểm BC)
Lời giải:
Đổi $4h30'=4,5$h
Thời gian đi quãng đường $AC$: $\frac{AC}{30}$ (h)
Thời gian đi quãng đường $CB$: $\frac{CB}{20}=\frac{AC-10}{20}$ (h)
Ta có:
$\frac{AC}{30}+\frac{AC-10}{20}=4,5$$\Leftrightarrow \frac{AC}{12}=5\Rightarrow AC=60$ (km)
$CB=60-10=50$ (km)
Lời giải:
Đổi $4h30'=4,5$h
Thời gian đi quãng đường $AC$: $\frac{AC}{30}$ (h)
Thời gian đi quãng đường $CB$: $\frac{CB}{20}=\frac{AC-10}{20}$ (h)
Ta có:
$\frac{AC}{30}+\frac{AC-10}{20}=4,5$$\Leftrightarrow \frac{AC}{12}=5\Rightarrow AC=60$ (km)
$CB=60-10=50$ (km)
Gọi độ dài quãng đường AC là x
=>Độ dài CB là x+20
Theo đề, ta có: x/30+(x+20)/20=4+1/3=13/3
=>x/30+x/20=13/3-1=10/3
=>x=40
=>CB=60km
????????????????????????????????