Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 Chứng minh rằng :
n(n+2)(n+7) chia hết cho 3
LÀM HỘ MK NHÉ!! AI NHANH MK TICK!!!!!
Ta có n.(n+1)(n+2) là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 3
Với n hoặc n+2 chia hết cho 3 thì n.(n+2)(n+7) sẽ chia hết cho 3
Với n+1 chia hết cho 3 thì n+1+6 chia hết cho 3 ( vì 6 chia hết cho 3 )
nên n+7 chia hết cho 3 suy ra n.(n+2)(n+7) sẽ chia hết cho 3
Vậy n.(n+2)(n+7 chia hết cho 3 với mọi n
Cảm ơn bạn nhé
Ta có n.(n+1)(n+2) là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 3
Với n hoặc n+2 chia hết cho 3 thì n.(n+2)(n+7) sẽ chia hết cho 3
Với n+1 chia hết cho 3 thì n+1+6 chia hết cho 3 ( vì 6 chia hết cho 3 )
nên n+7 chia hết cho 3 suy ra n.(n+2)(n+7) sẽ chia hết cho 3
Vậy n.(n+2)(n+7 chia hết cho 3 với mọi n
Cảm ơn bạn nhé