\(-5x^2+x-15\)
Chứng mình biểu thức luôn dương hoặc âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
C=(4x)2+4x+1+99
=(4x+1)2+99>0
Vậy biểu thức luôn dương
Chúc hok tốt
Xét \(C=16x^2+4x+100\)
\(C=4x\left(4x+1\right)+100\)
Mà \(4x\left(4x+1\right)\ge0,\forall x\)( \(\forall x\)nghĩa là VỚI MỌI X nha bạn)
\(\Rightarrow4x\left(4x+1\right)+100>0,\forall x\)
\(\Leftrightarrow C>0\)
Vậy, \(4x\left(4x+1\right)+100>0,\forall x\)(ĐPCM)
\(-25x^2+30x-100\)
\(=-\left(25x^2-30x+100\right)\)
\(=-\left(25x^2-30x+9+91\right)\)
\(=-\left\{\left(5x-3\right)^2+91\right\}\)
\(=-\left(5x+3\right)^2-91< 0\forall x\)
học tốt
\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)
\(4x^2-8x+5\)
\(=\left(2x\right)^2-2×2×2x+1+4\)
\(=\left(2x-1\right)^2+1\)
\(\Rightarrow\left(2x-1\right)^2+1>0\)
Vậy biểu thức trên luôn dương !!!
\(4x^2-12x+20\)
\(=\left(2x\right)^2-2.2x.3+9+11\)
\(=\left(2x-3\right)^2+11>0\forall x\)
học tốt
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
\(-\left(5x^2-x+15\right)=-\frac{1}{20}\left(100x^2-20x+300\right)=-\frac{1}{20}[\left(10x-1\right)^2-\frac{299}{20}< 0\forall x\)
\(-5x^2+x-15\)
\(=-5\left(x^2-\frac{1}{5}x+3\right)\)
\(=-5\left(x^2-2x\cdot\frac{1}{10}+\frac{1}{100}+\frac{299}{100}\right)\)
\(=-5\left[\left(x-\frac{1}{10}\right)^2+\frac{299}{100}\right]\)
Vì \(\left(x-\frac{1}{10}^2\right)+\frac{299}{100}>0\)\(\forall x\)
\(\Rightarrow-5\left[\left(x-\frac{1}{10}\right)^2+\frac{299}{100}\right]< 0\)\(\forall x\)
\(\Rightarrow-5x^2+x-15\)luôn âm