(\(\sqrt{28}\)-\(2\sqrt{3}\)+\(\sqrt{7}\))\(\sqrt{7}+\sqrt{84}\)
(\(\sqrt{6}\)+\(\sqrt{5}\))2-\(\sqrt{120}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\dfrac{\sqrt{3}\cdot\sqrt{11}}{\sqrt{11}}+5\sqrt{\dfrac{4}{3}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\sqrt{\dfrac{12}{3^2}}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\dfrac{2\sqrt{3}}{3}\)
= \(2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}\)
= \(-9\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-27\sqrt{3}}{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{-17\sqrt{3}}{3}\)
b, \(\sqrt{150}+\sqrt{1,6}\cdot\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+\dfrac{2\sqrt{10}}{5}\cdot2\sqrt{15}+4,5\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\sqrt{\dfrac{24}{3^2}}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+4,5\cdot\dfrac{2\sqrt{6}}{3}-\sqrt{6}\)
= \(5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}=11\sqrt{6}\)
c, \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(\left(3\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
= \(21-2\sqrt{21}+2\sqrt{21}=21\)
d, \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{30}+5-2\sqrt{30}=11\)
a) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(3\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=21-2\sqrt{21}+2\sqrt{21}\)
\(=21\)
b) \(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}\cdot1+1^2}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{2}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{1}{\sqrt{2}}\)
LG a
12√48−2√75−√33√11+5√1131248−275−3311+5113;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
12√48−2√75−√33√11+5√1131248−275−3311+5113
=12√16.3−2√25.3−√3.11√11+5√1.3+13=1216.3−225.3−3.1111+51.3+13
=12√42.3−2√52.3−√3.√11√11+5√43=1242.3−252.3−3.1111+543
=12.4√3−2.5√3−√3+5√4√3=12.43−2.53−3+543
=42√3−10√3−√3+5√4.√3√3.√3=423−103−3+54.33.3
=2√3−10√3−√3+52√33=23−103−3+5233
=2√3−10√3−√3+10√33=23−103−3+1033
=(2−10−1+103)√3=(2−10−1+103)3
=−173√3=−1733.
LG b
√150+√1,6.√60+4,5.√223−√6;150+1,6.60+4,5.223−6;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6
=√25.6+√1,6.60+4,5.√2.3+23−√6=25.6+1,6.60+4,5.2.3+23−6
=√52.6+√1,6.(6.10)+4,5√83−√6=52.6+1,6.(6.10)+4,583−6
=5√6+√(1,6.10).6+4,5√8√3−√6=56+(1,6.10).6+4,583−6
=5√6+√16.6+4,5√8.√33−√6=56+16.6+4,58.33−6
=5√6+√42.6+4,5√8.33−√6=56+42.6+4,58.33−6
=5√6+4√6+4,5.√4.2.33−√6=56+46+4,5.4.2.33−6
=5√6+4√6+4,5.√22.63−√6=56+46+4,5.22.63−6
=5√6+4√6+4,5.2√63−√6=56+46+4,5.263−6
=5√6+4√6+9√63−√6=56+46+963−6
=5√6+4√6+3√6−√6=56+46+36−6
=(5+4+3−1)√6=11√6.=(5+4+3−1)6=116.
Cách 2: Ta biến đổi từng hạng tử rồi thay vào biểu thức ban đầu:
+ √150=√25.6=5√6150=25.6=56
+ √1,6.60=√1,6.(10.6)=√(1,6.10).6=√16.61,6.60=1,6.(10.6)=(1,6.10).6=16.6
=4√6=46
+ 4,5.√223=4,5.√2.3+23=4,5.√83=4,5√8.334,5.223=4,5.2.3+23=4,5.83=4,58.33
=4,5.√4.2.33=4,5.2.√63=9.√63=3√6.=4,5.4.2.33=4,5.2.63=9.63=36.
Do đó:
√150+√1,6.√60+4,5.√223−√6150+1,6.60+4,5.223−6
=5√6+4√6+3√6−√6=56+46+36−6
=(5+4+3−1)√6=11√6=(5+4+3−1)6=116
LG c
(√28−2√3+√7)√7+√84;(28−23+7)7+84;
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
+ A√B=A√BBAB=ABB, với B>0B>0.
Lời giải chi tiết:
Ta có:
=(√28−2√3+√7)√7+√84=(28−23+7)7+84
=(√4.7−2√3+√7)√7+√4.21=(4.7−23+7)7+4.21
=(√22.7−2√3+√7)√7+√22.21=(22.7−23+7)7+22.21
=(2√7−2√3+√7)√7+2√21=(27−23+7)7+221
=2√7.√7−2√3.√7+√7.√7+2√21=27.7−23.7+7.7+221
=2.(√7)2−2√3.7+(√7)2+2√21=2.(7)2−23.7+(7)2+221
=2.7−2√21+7+2√21=2.7−221+7+221
=14−2√21+7+2√21=14−221+7+221
=14+7=21=14+7=21.
LG d
(√6+√5)2−√120.(6+5)2−120.
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: abc=a.c+bcabc=a.c+bc.
+ Hằng đẳng thức số 1: (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2.
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
√A2.B=A√BA2.B=AB, nếu A≥0, B≥0A≥0, B≥0.
√A2.B=−A√BA2.B=−AB, nếu A<0, B≥0A<0, B≥0.
+ √a.√b=√aba.b=ab, với a, b≥0a, b≥0.
Lời giải chi tiết:
Ta có:
(√6+√5)2−√120(6+5)2−120
=(√6)2+2.√6.√5+(√5)2−√4.30=(6)2+2.6.5+(5)2−4.30
=6+2√6.5+5−2√30=6+26.5+5−230
=6+2√30+5−2√30=6+5=11.=6+230+5−230=6+5=11.
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
= \(-\sqrt{5}+15\sqrt{2}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)
= \(11+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)
Bài này dễ ẹc ( đâu có khó đâu :)) )
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)
\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)
\(=15\sqrt{2}-\sqrt{5}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)
\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)
\(=14+7+\left(2-2\right)\sqrt{21}=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)
\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)
Hok tốt
2\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(14-\sqrt{84}+7-\sqrt{84}\)
= 21
\(2\sqrt{40\sqrt{3}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\cdot\sqrt{40\sqrt{3}}-2\cdot\sqrt{5\sqrt{3}}-3\cdot\sqrt{20\sqrt{3}}\)
\(=2\cdot2\sqrt{10}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-6\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
\(=4\sqrt{10}\sqrt{\sqrt{3}}-4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
a: \(=3\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)-3\sqrt{6}\)
=3căn 6-6-3căn 6=-6
b: \(=\dfrac{a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\sqrt{a}\)
\(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(1.\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right).\sqrt{7}+\sqrt{84}=\left(3\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}=21-2\sqrt{21}+2\sqrt{21}=21\)
\(2.\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}=11+2\sqrt{30}-2\sqrt{30}=11\)