Cho x^ 2+5y^2 -4xy-6y+9=0 . Tính giá trị của A= 𝑥+𝑦 / x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
Thay \(x-y=7\)vào biểu thức ta được:
\(A=7^2+2.7+37=49+14+37=100\)
b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)
mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)
\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)
Vậy \(xy=2\)
a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37
= x2 + 2x + y2 - 2y - 2xy + 37
= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37
= ( x - y )2 + 2( x - y ) + 37
Thế x - y = 7 vào A ta được :
A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100
Vậy A = 100 khi x - y = 7
b) x + y = 3 => ( x + y )2 = 9
=> x2 + 2xy + y2 = 9
=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )
=> 2xy = 4
=> xy = 2
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
a: =>xy=-18
=>x,y khác dấu
mà x<y<0
nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài
b: =>(x+1)(y-2)=3
\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
c: \(\Leftrightarrow8x-4=3x-9\)
=>5x=-5
hay x=-1
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên
\(x^2+5y^2-4xy-6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
\(\Rightarrow A=...\)