K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Lời giải:

Ta có: a2b+a+b⋮ab2+b+7

⇒a2b2+ab+b2⋮ab2+b+7

⇔a(ab2+b+7)+b2−7a⋮ab2+b+7

⇔b2−7a⋮ab2+b+7

Ta xét các TH sau:

TH1: b2=7a→b⋮7→b=7t , khi đó a=7t2

Thay vào điều kiện ban đầu ta thấy luôn đúng.

TH2: b2−7a>0⇒b2−7a≥ab2+b+7

Vì a∈Z+⇒a≥1⇒ab2+b+7+7a>b2 (vô lý)

TH3: 7a−b2>0⇒7a−b2≥ab2+b+7

Để thỏa mãn điều kiện trên thì ít nhất b2<7⇔b∈{1;2}

Thay từng giá trị b vào điều kiện ban đầu ta thu được các cặp (a,b) thỏa mãn là: (11,1),(49,1)

23 tháng 4 2018

Tìm các số nguyên dương a, b thỏa mãn :5/a-b/3=1/6

23 tháng 4 2018

quy dong mau len rui tinh theo phuong phap uoc ay cau

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

28 tháng 10 2019

Bạn tham khảo nhé!!!!

a3+b3=3ab−1

⇔a3+b3−3ab+1=0⇔a3+b3−3ab+1=0

⇔(a+b)3−3ab(a+b)−3ab+1=0

⇔(a+b)3+1−3ab(a+b+1)=0

⇔(a+b+1)[(a+b)2−(a+b)+1]−3ab(a+b+1)=0

⇔(a+b+1)(a2+b2+1−ab−a−b)=0

Vì a,b>0a,b>0 nên a+b+1≠0

Do đó:

a2+b2+1−a−b−ab=0

\(\frac{\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2}{2}\)=0

a=b=1

Do đó: a2018+b2019=1+1=2

Ta có đpcm.

28 tháng 10 2019

đề lm j cho a3+b3=3ab-1 đâu bạn

13 tháng 7 2020

Mình đã làm 1 cách trong TKHĐ giờ làm cách 2 nhá

\(c+\frac{1}{b}=a+\frac{b}{a}\)

\(\Leftrightarrow c-a=\frac{b}{a}-\frac{1}{b}=\frac{b^2-a}{ab}\)

Khi đó \(b^2-a⋮ab\Leftrightarrow b^2-a=kab\) với k là số nguyên dương

Khi đó \(b^2=a\left(kb+1\right)\)

Mà \(\left(b;kb+1\right)=1\Rightarrow kb+1=1\Rightarrow kb=0\Rightarrow k=0\)

\(\Rightarrow a=b^2\Rightarrow ab=b^3\left(đpcm\right)\)