So sánh :
A = 2016/2017 + 2017/2018 + 2018/2019 vs 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}=\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1-\frac{1}{2019}\right)\)
\(A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)
Ta có :
2016/2017 < 1
2017/2018 < 1
2018/2019 < 1
Mà 2016/2017 + 2017/2018 + 2018/2019 < 1 + 1 + 1 = 3
Nên A < 3
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
Ta có:
\(\frac{2016}{2017}< 1\)
\(\frac{2017}{2018}< 1\)
\(\frac{2018}{2019}< 1\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)
\(\Rightarrow A< 3\)
Vậy \(A< 3\)
Tham khảo nhé
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}\)
\(=\left(1+1+1\right)-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 3\left(đpcm\right)\)
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
Ta có : \(\frac{2016}{2017}< \frac{2017}{2017}=1\)
\(\frac{2017}{2018}< \frac{2018}{2018}=1\)
\(\frac{2018}{2019}< \frac{2019}{2019}=1\)
Nên : \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)
\(\frac{2016}{2017}< 1\)
\(\frac{2017}{2018}< 1\)
\(\frac{2018}{2019}< 1\)
=> \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1=3\)