\(Cho\)\(a< b< c< d\)và\(a;b;c;d\inℕ\)
\(CM\frac{a+c}{a+b+c+d}< \frac{1}{2}\)
\(\frac{b+d}{a+b+c+d}>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=1\)( vì a+c=b+d)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{c}{d}=1\end{cases}}\)
mà theo đầu bài \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\)giả sử sai
\(\Rightarrow\frac{a}{b}< 1\)và \(\frac{c}{d}=1\)
a) + b) Vẽ hình
c) d ⊥ a vì d ⊥ b và a // b.
• Ta có: b // a và c // a nên c // b
• d ⊥ c vì d ⊥ b và c // b
a) a-b = 2,5-6,7 = -4,2
b-a = 6,7-2,5=4,2
Vì -4,2 < 4,2 nên a-b < b-a
b) b-d = 6,7--0,3 = 7
d-b=-0,3-6,7=-7
Vì 7 > -7 nên b-d > d-b
c) b-d = 6,7--0,3 = 7
-b-(-d)=-b+d=-6,7+(-0,3)=-7
Vì 7 > -7 nên b-d > -b-(-d)
d) b-c=6,7-3,1=3,6
c-b=3,1-6,7=-3,6
Vì 3,6 > -3,6 nên b-c > c-b
e) a-b = 2,5-6,7 = -4,2
-b-(-a)=-b+a=-6,7+2,5=4,2
Vì -4,2 < 4,2 nên a-b < -b-(-a)
f) c-a=3,1-2,5=0,6
-c-(-a)=-c+a=-3,1+2,5=-0,6
Vì 0,6 > -0,6 nên c-a > -c-(-a)
Đặt A/B=C/D=k
=>A=k*B; C=D*k
A/B=k*B/B=k
\(\dfrac{A+C}{B+D}=\dfrac{k\cdot B+k\cdot D}{B+D}=k\)
=>\(\dfrac{A}{B}=\dfrac{A+C}{B+D}\)
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Cộng thêm 1 vào mỗi đẳng thức, ta được :
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì các tử số của mỗi tỉ số bằng nhau suy ra các mẫu số của mỗi tỉ số bằng nhau
\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{a+d}{a+b}+\frac{d+a}{c+d}\)
\(A=1+1+1+1=4\)