\(\sqrt{7+\sqrt{13}}\) + \(\sqrt{7-\sqrt{13}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(A^2=13+\sqrt{7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+....}}}}}\)
=>\(\left(A^2-13\right)^2=7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7...}}}}\)
=>\(\left(A^2-13\right)^2=7+A\)
Đến đây tách ra giải PT bậc 4 nha!
đặt
\(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\)
=>\(\sqrt{2}A=\sqrt{2}\sqrt{7+\sqrt{13}}+\sqrt{2}\sqrt{7-\sqrt{13}}\)
\(=\sqrt{14+2\sqrt{13}}+\sqrt{14-2\sqrt{13}}\)
\(=\sqrt{13+2\sqrt{13}+1}+\sqrt{13-2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}+1\right)^2}+\sqrt{\left(\sqrt{13}-1\right)^2}\)
\(=\sqrt{13}+1+\sqrt{13}-1=2\sqrt{13}\)
=>\(A=\frac{2\sqrt{13}}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{2}\sqrt{13}}{\sqrt{2}}=\sqrt{2}\sqrt{13}=\sqrt{26}\)
suy ra : ĐPCM
Bài làm:
Đặt \(A=\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\)
\(\Leftrightarrow A^2=\left(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}\right)^2\)
\(=7-\sqrt{13}-2\sqrt{\left(7-\sqrt{13}\right)\left(7+\sqrt{13}\right)}+7+\sqrt{13}\)
\(=14-2\sqrt{49-13}\)
\(=14-2\sqrt{36}=14-2.6=14-12=2\)
\(\Rightarrow A=\sqrt{2}\)
Thay vào ta được:
\(\sqrt{7-\sqrt{13}}-\sqrt{7+\sqrt{13}}+\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(1.\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\text{|}\sqrt{5}-\sqrt{2}\text{|}-\text{|}\sqrt{5}+\sqrt{2}\text{|}=-2\sqrt{2}\)\(2.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{|}2\sqrt{2}+\sqrt{5}\text{|}+\text{|}2\sqrt{2}-\sqrt{5}\text{|}=4\sqrt{2}\)\(3.\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{5}\right)\text{|}\sqrt{5}-\sqrt{2}\text{|}=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
*\(A=2\sqrt{80\sqrt{7}}-2\sqrt{45\sqrt{7}}-5\sqrt{20\sqrt{7}}\)
\(A=16\sqrt{5\sqrt{7}}-6\sqrt{5\sqrt{7}}-10\sqrt{5\sqrt{7}}\)
\(A=\left(16-6-10\right)\sqrt{5\sqrt{7}}=0\)
* \(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\right).\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\)
\(B^3=10-9B\)
\(\Rightarrow B^3+9B-10=0\)
\(\Rightarrow B^3-B^2+B^2-B+10B-10=0\)
\(\Rightarrow B^2\left(B-1\right)+B\left(B-1\right)+10\left(B-1\right)=0\)
\(\Rightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Rightarrow B=1\)
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
Đặt \(A=\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\Rightarrow A^2=7+\sqrt{13}+7-\sqrt{13}+2\sqrt{\left(7+\sqrt{13}\right)\left(7-\sqrt{13}\right)}=14+2\sqrt{49-13}=14+2\sqrt{36}=14+12=26\Rightarrow A=\pm\sqrt{26}\)Mà \(\left\{{}\begin{matrix}\sqrt{7+\sqrt{13}}>0\\\sqrt{7-\sqrt{13}}>0\end{matrix}\right.\)⇒\(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}>0\Rightarrow A>0\)
Vậy \(A=\sqrt{26}\Rightarrow\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}=\sqrt{26}\)
Mình thấy nhân cả 2 vế với \(\sqrt{2}\) nhanh hơn?