K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

*)Giả sử với \(n=2\) đặt \(\hept{\begin{cases}2x=b+c-a\\2y=a-b+c\\2z=a+b-c\end{cases}\left(x,y,z>0\right)}\)

\(\Rightarrow a=y+z;b=x+z;c=x+y\)

BĐT cần chứng minh là \(xy^3+yz^3+xz^3-xyz\left(x+y+z\right)\ge0\)

Tự C/M cái này bằng AM-GM nhé

*)Giả sử đúng với n (tức là dạng t/q). KO mất tính tổng quát giả sử \(a\ge b\ge c\)

Khi đó ta có: \(b^nc(b-c)\ge-a^nb(a-b)-c^na(c-a)\)

\(\Rightarrow b^{n+1}c(b-c)\ge-a^nb^2(a-b)-c^nab(c-a)\)

Nên \(a^{n+1}b(a-b)+b^{n+1}c(b-c)+c^{n+1}a(c-a)\)

\(\ge a^{n+1}b(a-b)-a^nb^2(a-b)-c^nab(c-a)+c^{n+1}a(c-a)\)

\(=a^nb(a-b)+b^nc(b-c)+c^na(c-a)\ge0\) 

Theo nguyên lí quy nạp thì có ĐPCM

13 tháng 5 2022

Cảm ơn bạn nhiều ạ :DD

10 tháng 11 2016

Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên

p2 = m2 + n2

Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2

= - n2 + p2 - m2 = 0

=> a2 = b2 + c2

Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a

15 tháng 8 2017

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

15 tháng 8 2017

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h

24 tháng 12 2021

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

28 tháng 6 2019

Vì c là cạnh huyền 

=> \(c>a;c>b\)=> \(c^{n-2}>a^{n-2};c^{n-2}>b^{n-2}\)

Ta có \(c^2=a^2+b^2\)

=> \(c^n=a^2.c^{n-2}+b^2.c^{n-2}>a^2.a^{n-2}+b^2.b^{n-2}=a^n+b^n\)với n>2 (ĐPCM)

Vậy \(c^n>a^n+b^n\)

8 tháng 1 2021

\(P=\dfrac{ab\left(a+b\right)+c\left(a^2+b^2\right)}{abc}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\).

Áp dụng bất đẳng thức AM - GM:

\(P\ge\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{ab}}{\sqrt{a^2+b^2}}=\left(\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}\right)-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{a^2+b^2}}\ge3\sqrt[3]{\dfrac{a^2+b^2}{ab}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}}-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{2ab}}=6-\left(4-\sqrt{2}\right)=2+\sqrt{2}\).

Đẳng thức xảy ra khi và chỉ khi tam giác ABC vuông cân tại A.