cho a,b, c là độ dài 3 cạnh của tam giác vuông. với a là cạnh huyền. Chứng minh :
\(a^n\ge b^n+c^n\left(n\varepsilonℕ,n\ge2\right)\)
mấy thánh toán giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*)Giả sử với \(n=2\) đặt \(\hept{\begin{cases}2x=b+c-a\\2y=a-b+c\\2z=a+b-c\end{cases}\left(x,y,z>0\right)}\)
\(\Rightarrow a=y+z;b=x+z;c=x+y\)
BĐT cần chứng minh là \(xy^3+yz^3+xz^3-xyz\left(x+y+z\right)\ge0\)
Tự C/M cái này bằng AM-GM nhé
*)Giả sử đúng với n (tức là dạng t/q). KO mất tính tổng quát giả sử \(a\ge b\ge c\)
Khi đó ta có: \(b^nc(b-c)\ge-a^nb(a-b)-c^na(c-a)\)
\(\Rightarrow b^{n+1}c(b-c)\ge-a^nb^2(a-b)-c^nab(c-a)\)
Nên \(a^{n+1}b(a-b)+b^{n+1}c(b-c)+c^{n+1}a(c-a)\)
\(\ge a^{n+1}b(a-b)-a^nb^2(a-b)-c^nab(c-a)+c^{n+1}a(c-a)\)
\(=a^nb(a-b)+b^nc(b-c)+c^na(c-a)\ge0\)
Theo nguyên lí quy nạp thì có ĐPCM
Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên
p2 = m2 + n2
Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2
= - n2 + p2 - m2 = 0
=> a2 = b2 + c2
Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)
Giả sử đúng với \(n=k\)
\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)
Cần cm nó cũng đúng với \(n=k+1\)
\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)
Vậy BĐT đúng với \(n=k+1\)
\(\RightarrowĐpcm\)
Vì c là cạnh huyền
=> \(c>a;c>b\)=> \(c^{n-2}>a^{n-2};c^{n-2}>b^{n-2}\)
Ta có \(c^2=a^2+b^2\)
=> \(c^n=a^2.c^{n-2}+b^2.c^{n-2}>a^2.a^{n-2}+b^2.b^{n-2}=a^n+b^n\)với n>2 (ĐPCM)
Vậy \(c^n>a^n+b^n\)
\(P=\dfrac{ab\left(a+b\right)+c\left(a^2+b^2\right)}{abc}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\).
Áp dụng bất đẳng thức AM - GM:
\(P\ge\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{ab}}{\sqrt{a^2+b^2}}=\left(\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}\right)-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{a^2+b^2}}\ge3\sqrt[3]{\dfrac{a^2+b^2}{ab}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}}-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{2ab}}=6-\left(4-\sqrt{2}\right)=2+\sqrt{2}\).
Đẳng thức xảy ra khi và chỉ khi tam giác ABC vuông cân tại A.