\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\sqrt{3-2\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
h)
\(H=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2-\sqrt{3})(2+\sqrt{3})}}=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=2\sqrt{3}\)
i)
\(I=\frac{2+\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3.1}}}+\frac{2-\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3.1}}}=\frac{2+\sqrt{3}}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{(\sqrt{3}-1)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-(\sqrt{3}-1)}=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{(2+\sqrt{3})(3-\sqrt{3})+(2-\sqrt{3})(3+\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}=\frac{6}{6}=1\)
ê)
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}\)
\(=\sqrt{(2+5+2\sqrt{2.5})+1+2(\sqrt{2}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+1+2(\sqrt{2}+\sqrt{5})}=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}=\sqrt{2}+\sqrt{5}+1\)
g)
\(13+\sqrt{48}=13+2\sqrt{12}=12+1+2\sqrt{12.1}=(\sqrt{12}+1)^2\)
\(\Rightarrow \sqrt{13+\sqrt{48}}=\sqrt{12}+1\)
\(\Rightarrow \sqrt{3+\sqrt{13+\sqrt{48}}}=\sqrt{4+\sqrt{12}}=\sqrt{3+1+2\sqrt{3.1}}=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)
\(\Rightarrow 2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}=2\sqrt{2-\sqrt{3}}=\sqrt{2}.\sqrt{4-2\sqrt{3}}=\sqrt{2}.\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{2}(\sqrt{3}-1)=\sqrt{6}-\sqrt{2}\)
\(\Rightarrow G=1\)
1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
\(=1+\sqrt{2}\)
2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)
\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)
\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)
\(=\sqrt{3}\left(6-4+3\right)\)
\(=5\sqrt{3}\)
3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)
Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)
\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)
\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)
\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)
\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)
\(=2\sqrt{6}-12\sqrt{3}\)
4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)
\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)
\(=\frac{6-2\sqrt{3}}{6}\)
\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)
5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)
6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)
\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)
\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)
\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)
\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)
\(=14\)
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\sqrt{2}\)
Nhân cả tử và mẫu với biểu thức liên hợp của mẫu (câu a mẫu cuối kì kì)
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\frac{1}{4}=\sqrt{3}-\frac{3}{4}\)
\(B=-\left(\sqrt{1}+\sqrt{2}-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-...+\sqrt{7}+\sqrt{8}-\sqrt{8}-\sqrt{9}\right)\)
\(B=-\left(\sqrt{1}-\sqrt{9}\right)=2\)
a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)
=-7
b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)
So sánh:
1) \(2\sqrt{27}\) và \(\sqrt{147}\)
+ \(2\sqrt{27}\) = \(6\sqrt{3}\)
+ \(\sqrt{147}\) = \(7\sqrt{3}\)
⇒ \(6\sqrt{3}\) < \(7\sqrt{3}\)
Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)
2) \(2\sqrt{15}\) và \(\sqrt{59}\)
+ \(2\sqrt{15}\) = \(\sqrt{60}\)
⇒ \(\sqrt{60}\) > \(\sqrt{59}\)
Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)
3) \(2\sqrt{2}-1\) và 2
\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)
So sánh: 3 và \(2\sqrt{2}\)
+ 3 = \(\sqrt{9}\)
+ \(2\sqrt{2}=\sqrt{8}\)
⇒ \(\sqrt{8}\) < \(\sqrt{9}\)
⇒ \(\sqrt{8}\) -1 < \(\sqrt{9}\) -1
⇒ \(2\sqrt{2}\) - 1 < 3 - 1
Vậy: \(2\sqrt{2}-1< 2\)
4) \(\frac{\sqrt{3}}{2}\) và 1
+ 1 = \(\frac{2}{2}\)
⇒ \(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)
Vậy: \(\frac{\sqrt{3}}{2}\) < 1
5) \(\frac{-\sqrt{10}}{2}\) và \(-2\sqrt{5}\)
+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)
⇒ \(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)
Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)