Rút gọn:
(2x-1)(4x^2-3x+1)+(2x+1)(4x^2+3x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2=\left(3x+2\right)^2-\left(3x+1\right)^2=\left(3x+2-3x-1\right)\left(3x+2+3x+1\right)=1.\left(6x+3\right)=6x+3\)
b) \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2=1-16x^4-4x^2-12x-9=-16x^4-4x^2-12x-8\)
a: \(\left(3x+2\right)\left(3x+2\right)-\left(3x+1\right)^2\)
\(=9x^4+12x+4-9x^2-6x-1\)
=6x+3
b: \(\left(1-4x^2\right)\left(1+4x^2\right)-\left(2x+3\right)^2\)
\(=1-16x^4-4x^2-12x-9\)
\(=-16x^4-4x^2-12x-8\)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
Ta có: \(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)\)
\(=6x^2-2x-\left(2x^2-6x+x-3\right)\)
\(=6x^2-2x-2x^2+5x+3\)
\(=4x^2+3x+3\)
Ta có: \(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)\)
\(=3x^2-6x-\left(4x^2-4x+2x-2\right)\)
\(=3x^2-6x-4x^2+2x+2\)
\(=-x^2-4x+2\)
\(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)=6x^2-2x-2x^2+5x+3=4x^2+3x+3\)
\(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)=3x^2-6x-4x^2+2x-2=-x^2-4x-2\)
A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
A = \(\left(3x-1+2x+1\right)^2\)
A)
<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1
<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)
<=> 25x^2
B)
<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3
<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)
<=> 35
Đặt `A=(1-3x)/(2x)+(3x-2)/(2x-1)+(3x-2)/(2x-4x^2)`
`=(2x(3x-2))/(2x(2x-1))-((3x-1)(2x-1))/(2x(2x-1))-(3x-2)/(2x(2x-1))`
`=(6x^2-4x-6x^2+5x-1-3x+2)/(2x(2x-1))`
`=(-2x+1)/(2x(2x-1))`
`=-1/(2x)`
`2x=1/(483)`
`=>A=-1/(1/483)=-483`
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
ta có : \(\left(2x-1\right)\left(4x^2-3x+1\right)+\left(2x+1\right)\left(4x^2+3x+1\right)\)
\(=2x\left(4x^2-3x+1\right)-\left(4x^2-3x+1\right)+2x\left(x^2+3x+1\right)+\left(4x^2+3x+1\right)\)
\(=2x\left(4x^2-3x+1\right)+2x\left(4x^2+3x+1\right)-\left(4x^2-3x+1\right)+\left(4x^2+3x+1\right)\)
\(=2x\left(4x^2-3x+1+4x^2+3x+1\right)-\left(4x^2-3x+1-4x^2-3x-1\right)\)
\(=2x\left(8x^2+2\right)-\left(-6x\right)=16x^3+4x+6x=16x^3+10x\)
Cảm ơn nha.