K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

a) Ta có : n2 + 2n - 7 = n(n + 2) - 7

Do n + 2 \(⋮\)n + 2 nên n(n + 2) \(⋮\)n + 2

Để n(n + 2) - 7\(⋮\)n + 2 thì 7 \(⋮\)n + 2 => n + 2 \(\)Ư(7) = {1; -1; 7; -7}

Lập bảng :

 n + 2  1   -1  7  -7
   n  -1 -3  5  -9

Vậy n = {-1; -3; 4; -9} thì n2 + 2n - 7 \(⋮\)n + 2

29 tháng 8 2018

bn mua sách giải về tham khảo nha! Hok tốt

a: Ta có: \(2n+1⋮n+2\)

\(\Leftrightarrow2n+4-3⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

b: Để B là số nguyên thì \(n+3⋮n-2\)

\(\Leftrightarrow n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

c: Để C là số nguyên thì \(3n+7⋮n-1\)

\(\Leftrightarrow3n-3+10⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

15 tháng 1 2018

a/ Ta có: 2n-7=2n+6-13=2(n+3)-13

Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n

=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3

=> n+3=(-13,-1,1,13)

  n+3 -13  -1  1  13
   n  -16  -4  -2  10
15 tháng 1 2018

b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1 

2n-1 chia hết cho 2n-1

=>2n+10-(2n-1) chia hết cho 2n-1

=>2n+10-2n+1 chia hết cho 2n-1

=>11 chia hết cho 2n-1

=>2n-1 E Ư(11)={1;-1;11;-11}

=>n E {1;0;6;-5}

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

15 tháng 12 2016

làm câu

8 tháng 10 2018

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

5 tháng 2 2017

a) Ta có : n+7 \(⋮\)n+2

\(\Rightarrow\)n+2+5\(⋮\)n+2

mà n+2\(⋮\)n+2

\(\Rightarrow\)5\(⋮\)n+2

\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}

\(\Rightarrow n\in\){-7;-3;-1;2}

b,c,d tương tự

5 tháng 2 2017

giải hết ra giùm mk mk gấp lắm

cảm ơn bạn