chứng minh rằng \(4\sqrt{5}-3\sqrt{2}< 5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Đặt B = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{50}}\)
= \(1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\right)\)
Đặt \(A=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\)
Xét A < \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{49}+\sqrt{50}}\)
=> A < \(\dfrac{\sqrt{2}-\sqrt{1}}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{50}-\sqrt{40}}{1}\)
=> A < -1 + \(\sqrt{50}\)
=> 2A < -2 + \(10\sqrt{2}\)
=> 2A + 1 = B < -2 + \(10\sqrt{2}\) + 1
=> B < -1 + \(10\sqrt{2}\) < \(10\sqrt{2}\) (1)
Xét \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
=> \(\dfrac{1}{\sqrt{1}}>2\left(\sqrt{2}-\sqrt{1}\right)\)
\(\dfrac{1}{\sqrt{2}}>2\left(\sqrt{3}-\sqrt{2}\right)\)
\(\dfrac{1}{\sqrt{3}}>2\left(\sqrt{4}-\sqrt{3}\right)\)
...
\(\dfrac{1}{\sqrt{50}}>2\left(\sqrt{51}-\sqrt{50}\right)\)
=> B > 2(\(\sqrt{51}-\sqrt{1}\))
=> B >-2 + \(10\sqrt{2}\) > \(5\sqrt{2}\)
Cảm ơn bạn nha. Mà bạn bị nhầm 49 thành 40 ở dòng thứ 5 đó.