giải các phương trình :
a)\(\dfrac{x+43}{57}+\dfrac{x+46}{54}=\dfrac{x+49}{51}+\dfrac{x+52}{48}\)
b)\(\dfrac{x-69}{30}+\dfrac{x-67}{32}+\dfrac{x-65}{34}=\dfrac{x-63}{36}+\dfrac{x-61}{38}+\dfrac{x-59}{40}\)
giúp mình với , mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-99) (1/30 + 1/32 + 1/34 - 1/36 - 1/38) = 0
SUy ra x - 99 = 0
VẬy x =99
\(\)Bạn viết thiếu 1 vế đúng không?
\(\dfrac{x-69}{30}+\dfrac{x-67}{32}+\dfrac{x-65}{34}=\dfrac{x-63}{36}+\dfrac{x-61}{38}+\dfrac{x-59}{40}\)\(\Rightarrow\left(\dfrac{x-69}{30}-1\right)+\left(\dfrac{x-67}{32}-1\right)+\left(\dfrac{x-65}{34}-1\right)=\left(\dfrac{x-63}{36}-1\right)+\left(\dfrac{x-61}{38}-1\right)+\left(\dfrac{x-59}{40}-1\right)\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}=\dfrac{x-99}{36}+\dfrac{x-99}{38}+\dfrac{x-99}{40}\)
\(\Rightarrow\dfrac{x-99}{30}+\dfrac{x-99}{32}+\dfrac{x-99}{34}-\dfrac{x-99}{36}-\dfrac{x-99}{38}-\dfrac{x-99}{40}=0\)\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\right)=0\)
Vì \(\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{34}-\dfrac{1}{36}-\dfrac{1}{38}-\dfrac{1}{40}\ne0\)
Nên:
\(x-99=0\Rightarrow x=99\)
\(\frac{43-x}{57}+\frac{46-x}{54}=\frac{49-x}{51}+\frac{52-x}{48}\)
\(\Leftrightarrow\left(\frac{43-x}{57}+1\right)+\left(\frac{46-x}{54}+1\right)=\left(\frac{49-x}{51}+1\right)+\left(\frac{52-x}{48}+1\right)\)
\(\Leftrightarrow\frac{43-x+57}{57}+\frac{46-x+54}{54}=\frac{49-x+51}{51}+\frac{52-x+48}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}=\frac{100-x}{51}+\frac{100-x}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}-\left(\frac{100-x}{51}+\frac{100-x}{48}\right)=0\)
\(\Leftrightarrow\left(100-x\right)\left[\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)\right]=0\) (*)
Vì\(\frac{1}{57}< \frac{1}{51},\frac{1}{54}< \frac{1}{48}\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)< \left(\frac{1}{51}+\frac{1}{48}\right)\)
\(\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)< 0\)
Phương trình (*) xảy ra khi: \(100-x=0\Leftrightarrow x=100\)
Vậy phương trình có nghiệm duy nhất là x = 100
Ta có : \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{49}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{49}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{49}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
<=> x - 100 = 0
<=> x = 100
Vậy ..
Ta có: \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{48}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)
\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{48}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{48}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)
\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)
Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)
\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)
\(\Leftrightarrow\left(x+60\right)\text{=}0\)
\(x\text{=}-60\)
\(Vậy...\)
Pt\(\Leftrightarrow\dfrac{x+98}{2}+1+\dfrac{x+96}{4}+1+\dfrac{x+65}{35}+1=\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+49}{51}+1\)
\(\Leftrightarrow\dfrac{x+100}{2}+\dfrac{x+100}{4}+\dfrac{x+100}{35}-\dfrac{x+100}{97}-\dfrac{x+100}{95}-\dfrac{x+100}{51}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{35}-\dfrac{1}{97}-\dfrac{1}{35}-\dfrac{1}{51}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy...
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)
\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\cdot\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\cdot\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)
\(\Rightarrow x=-66\)
Vậy x = -66.
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+\dfrac{x+3}{63}-\dfrac{x+5}{61}-\dfrac{x+7}{59}=0\)
\(\Leftrightarrow\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)-\left(\dfrac{x+5}{61}+1\right)-\left(\dfrac{x+7}{59}+1\right)=0\)\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}-\dfrac{x+66}{61}-\dfrac{x+66}{59}=0\)\(\Leftrightarrow\left(x+66\right)\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)Nhận xét : Do \(\dfrac{1}{65}< \dfrac{1}{63}< \dfrac{1}{61}< \dfrac{1}{59}\)
\(\Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)< 0\)
Vậy để \(\left(x+66\right)\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)\(\Leftrightarrow x+66=0\Leftrightarrow x=-66\)
Vậy....
tik mik nha !!!
a) \(\dfrac{x+43}{57}+\dfrac{x+46}{54}=\dfrac{x+49}{51}+\dfrac{x+52}{48}\)
\(\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+46}{54}+1\right)=\left(\dfrac{x+49}{51}+1\right)+\left(\dfrac{x+52}{48}\right)\)
\(\dfrac{x+43+57}{57}+\dfrac{x+46+54}{54}-\dfrac{x+49+51}{51}-\dfrac{x+52+48}{48}=0\)
\(\dfrac{x+100}{57}+\dfrac{x+100}{54}-\dfrac{x+100}{51}-\dfrac{x+100}{48}=0\)
\(\left(x+100\right)\left(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\right)=0\)
Mà \(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\ne0\)
Nên: \(x+100=0\)
\(x=-100\)