Cho \(x+y=2\).Chung minh rang \(xy\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x + y + z - xy - yz - xz \(\le1\)
\(\Leftrightarrow\left(1-x\right)+\left(xy-y\right)+\left(yz-xyz\right)+\left(xz-z\right)+xyz\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(1-y-z+yz\right)+xyz\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(\left(1-y\right)+\left(-z+yz\right)\right)+xyz\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)+xyz\ge0\)
Đúng vì theo đề ta có: \(\hept{\begin{cases}1-x\ge0\\1-y\ge0\\1-z\ge0\end{cases}}\)và \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)
Vậy ta có ĐPCM
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)
Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)
Ta có : \(x+y\le1\)
=> \(\left(x+y\right)^2\le1\)
=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )
=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )
=> đpcm
Đẳng thức xảy ra <=> x = y = 1/2
Ta có:
\(A+B+C=x^2y+xy^2+xy\)
\(=xy.\left(x+y+1\right)\)
mà theo bài ra \(x+y=-1\) nên
\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)
Vậy \(A+B+C=0\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(A+B+C=x^2y+xy^2+xy\)
\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)
\(\Rightarrowđpcm\)
bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:
BÀI LÀM
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)
\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)
đến đây bn tự giải thích và làm tiếp nhé
CÁCH 2: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)
Ta luôn có: \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
Áp dụng BĐT trên ta có: \(x^2+y^2\ge2xy\) mà \(xy\ge1\) nên \(x^2+y^2\ge2\)
\(xy\ge1\) \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)
Khi đó: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)
\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)
x + y = 2
=>(x - 1) + (y - 1) = 0
=> x - 1 đối y - 1
=> (x - 1)(y - 1)
=> (x - 1)(y - 1) ≤ 0
=> xy - x - y + 1 ≤ 0
=> xy - (x + y) + 1 ≤ 0
=> xy - 2 + 1 ≤ 0
=> xy - 1 ≤ 0
=> xy < 1 (đpcm)