Tìm các số nguyên x để \(E=\frac{x^3+x}{x-1}\) nhận giá trị là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)
Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\)
Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)
Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)
Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) ) => Ko tồn tại g/t nguyên của A (L)
Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\) \(\Rightarrow x+\dfrac{1}{x}+1\le-1\)
Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\) \(\Rightarrow A=-1\)
" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)
x = -1 ; ta có : P = 2 \(\in Z\) (t/m)
Vậy ...
\(\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\sqrt{x}+3-2}{\sqrt{x}+3}=\frac{\sqrt{x}+3}{\sqrt{x}+3}-\frac{2}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)
=> \(\sqrt{x}+3\inƯ\left(2\right)\)={-1,-2,1,2}
Ta có bảng :
\(\sqrt{x}+3\) | -1 | -2 | 1 | 2 |
x | vô lý | vô lý | vô lý | vô lý |
Vậy ko có x thõa mãn đề bài
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB. Kẻ DE vuông góc với BC( E thuộc BC ) .Tính độ dài AC biết BE=7cm, EC=25cm
Giúp mk vs nha các bn. Mk rất cần gấp!!!
Ta có :\(\frac{X^3+X}{X-1}=\frac{X^2\left(X-1\right)+X\left(X-1\right)+2\left(X-1\right)+2}{X-1}\)
\(=X^2+X+2+\frac{2}{X-1}\)
Để E nguyên \(\Leftrightarrow\)\(\frac{2}{X-1}\)nguyên
\(\Leftrightarrow X-1\)thuộc ước của 2
\(\Leftrightarrow X-1\in\left\{-2,-1,1,2\right\}\)
Ta lập bảng
Vậy \(X\in\left\{-1,0,2,3\right\}\)