Nếu cách chia hình vuông thành 16 hình vuông nhỏ . Lần lượt tô màu như sau : Tô màu vàng 3 phần 16 hình vuông , tô màu cam một phần tư hình vuông , tô màu xanh một phần 8 hình vuông , tô màu tím 5 phần 16 hình vuông . số ô vuông chưa tô màu chiếm bao nhiêu phần hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi diện tích được tô màu ở mỗi bước là Dễ thấy dãy các giá trị u n là một cấp số nhân với số hạng đầu u 1 = 4 9 và công bội q = 1 9
Gọi S k là tổng của k số hạng đầu trong cấp số nhân đang xét thì
Để tổng diện tích phần được tô màu chiếm 49,99% khi và chỉ khi
Vậy cần ít nhất 4 bước. Chọn B.
Hình vuông có 3 cách tô
Hiình tròn có 2 cách tô
=> 3x2=6 cách tô
Hình vuông có 3 cách tô
Hiình tròn có 2 cách tô
=> 3x2=6 cách tô
Diện tích ô vuông màu xanh sau lần phân chia thứ nhất là \(\frac{1}{9}\), số ô vuông màu xanh được tạo thêm là \({8^0}\).
Diện tích ô vuông màu xanh sau lần phân chia thứ hai là \(\frac{1}{{{9^2}}}\), số ô vuông màu xanh được tạo thêm là \({8^1}\).
Diện tích ô vuông màu xanh sau lần phân chia thứ ba là \(\frac{1}{{{9^3}}}\), số ô vuông màu xanh được tạo thêm là \({8^2}\).
Diện tích ô vuông màu xanh sau lần phân chia thứ tư là \(\frac{1}{{{9^4}}}\), số ô vuông màu xanh được tạo thêm là \({8^3}\).
Diện tích ô vuông màu xanh sau lần phân chia thứ ba là \(\frac{1}{{{9^5}}}\), số ô vuông màu xanh được tạo thêm là \({8^4}\).
Tổng diện tích các ô vuông màu xanh là
\(\frac{1}{9} + \frac{1}{{{9^2}}} \times {8^1} + \frac{1}{{{9^3}}} \times {8^2} + \frac{1}{{{9^4}}} \times {8^3} + \frac{1}{{{9^5}}} \times {8^4} = 0,445\).
An vẽ hai hình vuông bằng nhau. An chia hình vuông thứ nhất thành 4 phần bằng nhau rồi An tô màu 3 phần. An chia hình vuông thứ hai thành 12 phần bằng nhau. Hỏi An phải tô màu mấy phần ở hình thứ hai để diện tích phần đã tô màu ở hai hình bằng nhau? An cần tô 9 phần.