Cho tam giác ABC cân tại A, các tia phân giác BE, CF. Chứng minh BFEC là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC};\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{ACB}\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\end{matrix}\right.\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\\ \left\{{}\begin{matrix}\widehat{B_1}=\widehat{C_1}\\AB=AC\\\widehat{A}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AFC\left(g.c.g\right)\Rightarrow AE=AF\\ \Rightarrow\Delta AEF.cân\)
\(b,\left\{{}\begin{matrix}AE=AF\\AB=AC\end{matrix}\right.\Rightarrow AB-AF=AC-AE\Rightarrow BF=CE\\ \left\{{}\begin{matrix}BF=CE\\\widehat{ABC}=\widehat{ACB}\\BC.chung\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(c.g.c\right)\)
\(c,\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BFCE\) là hthang
Mà \(\widehat{ABC}=\widehat{ACB}\) nên BFCE là hthang cân
+) Do BE và CF lần lượt là tia phân giác của góc B và góc C nên ta có:
Mà tam giác ABC cân tại A nên ∠ B = ∠ C
Suy ra: ∠ ABE = ∠ ACF
Xét hai tam giác AEB và AFC
Có AB = AC ( ∆ ABC cân tại A)
∠ ABE = ∠ ACF (chứng minh trên)
∠ A là góc chung
⇒ ∆ AEB = ∆ AFC (g.c.g) ⇒ AE = AF ⇒ ∆ AEF cân tại A
⇒ ∠ AFE = ( 180 0 − ∠ A) / 2 và trong tam giác ∆ ABC: ∠ B = ( 180 0 − ∠A) / 2
⇒ ∠ AFE = ∠ B ⇒ FE//BC ( có hai góc ở vị trí đồng vị bằng nhau).
⇒ Tứ giác BFEC là hình thang.
Vì FE//BC nên ta có: ∠ FEB = ∠ EBC (so le trong)
Lại có: ∠ FBE = ∠ EBC ( vì BE là tia phân giác của góc B)
⇒ ∠ FBE = ∠ FEB
⇒ ∆ FBE cân ở F ⇒ FB = FE
⇒ Hình thang BFEC là hình thang cân có đáy nhỏ bằng cạnh bên (đpcm)
A B C E F
Ta có: \(\Delta ABC\) cân tại A (gt)
mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) (gt)
=> BE = CF
Xét \(\Delta ABE\) và \(\Delta ACF\) có:
BE = CF (cmt)
\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)
AB = AC (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)
=> AE = AF (2 cạnh tương ứng)
=> \(\Delta AFE\) cân tại A
mà \(\Delta ABC\) cân tại A
nên \(\widehat{ABC}=\widehat{AFE}\)
mà chúng ở vị trí đồng vị
=> FE // BC (dấu hiệu nhận biết)
=> BFEC là hình thang
mà BE = CF
=> BFEC là hình thang cân
Ta có: EF // BC (cmt)
=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)
mà \(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))
=> \(\Delta FEC\) cân tại E (t/c tam giác cân)
=> FE = EC (Đ/N tam giác cân)
mà hình thang BFEC cân
=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên
góc A là góc chung
AB=AC(giả thiết)
góc ABE= góc ACF(cmt)
=>tam giác ABE= tam giác ACF(c.g.c)
=>AE=AF
=>tam giác AEF cân tại A
=>AEF=180-A/2 (1)
có tam giác AEF cân tại A (gt) 180 độ nhé
=>góc ABC=180-A/2 (2)
từ (1) và (2) nên ^AFE=^ABC 2 góc đòng vị
=>FE song song với BC
mà ^B=^C
=>tứ giác BFEC là ht cân
a) Ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
Xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)Ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
Xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c) Tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
Tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
Ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
Từ (1)(2)=> tứ giác BFEC là hình thang cân
Xét ΔABE và ΔACF có:
^A : góc chung
AB=AC(gt)
^ABE=^ACF(cmt)
=>ΔABE=ΔACF(g..c.g)
=> AE=AF
=>ΔAEF cân tại A
=> AFEˆ=180−Aˆ2AFE^=180−A^2 (1)
Có: ΔABC cân tại A(gt)
=> ABCˆ=180−Aˆ2ABC^=180−A^2 (2)
Từ (1)(2) suy ra:
^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị
=>FE//BC
Mà ^B=^C(gt)
=> tứ giác BFEC là ht cân