K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

9 tháng 12 2019

18 tháng 4 2022

đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2

loading...nhowsloading...

21 tháng 4 2022

1c

2c

3a

31 tháng 3 2019

a) (2x – 1)(4x2 + 2x + 1) – 4x(2x2 – 3) = 23

⇔ 8x3 – 1 – 8x3 + 12x = 23

⇔ 12x = 24 ⇔ x = 2.

Tập nghiệm của phương trình: S = {2}

b) ĐKXĐ : x + 1 ≠ 0 và x – 2 ≠ 0 (vì vậy x2 – x – 2 = (x + 1)(x – 2) ≠ 0)

⇔ x ≠ -1 và x ≠ 2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 – 4 – x – 1 = x2 – x – 2 – 3 ⇔ 0x = 0

Phương trình này luôn nghiệm đúng với mọi x ≠ -1 và x ≠ 2.

20 tháng 11 2018

21 tháng 6 2017

Đáp án là D

24 tháng 9 2017

ĐK:  y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1

T H 1 :   y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o   t / m ) T H 2 :   x ≠ 1 , y ≠ 1  

Đưa pt thứ nhất về dạng tích ta được

( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0

Thay y= 2-x vào pt thứ 2 ta được  x 2 + x − 3 = 3 x + 7 − 2 − x

⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0

Do  x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0

Vậy  x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)

20 tháng 11 2019

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

4 tháng 6 2019