K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

b)

Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có

2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.

.Vậy  nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.

Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a , a + 1

Nếu a chia hết cho 2 thì bài toán đã được giải

Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán đã được giải

Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3

Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3

Bài này mik học rồi nên mik chắc chắn đúng luôn

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

29 tháng 9 2019

Các bạn giúp mình với

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

29 tháng 3 2020

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858

d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

6 tháng 8 2017

a) Gọi 2 số tự nhiên liên tiếp là n, n + 1 ( n thuộc N)

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ.

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2.

b) Gọi 3 số tự nhiên liên tiếp là n, n + 1, n + 2 (n thuộc N)

Ta có:

n + (n + 1) + (n + 2) = 3n + 3 chia hết cho 3 (vì 3n và 3 đều chia hết cho 3 nên tổng của chúng chia hết cho 3)

6 tháng 8 2017

a) Trong 2 số tự nhiên liên tiếp chắc rằng sẽ có 1 số chẵn và 1 số lẻ Suy ra : số chẵn sẽ chia hết cho 2

mk chỉ suy luận được câu a thôi

a: Vì trong hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn nên trong hai số tự nhiên liên tiếp, sẽ có một số chia hết cho 2