K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Theo đề ra, ta có:

\(a+b=\frac{5}{2}\)

\(\Rightarrow\left(a+b\right)^2=a^2+b^2+2ab=\frac{25}{4}\)

\(\Rightarrow a^2+b^2=\frac{25}{4}-2=\frac{17}{4}\)

Ta có:

\(\left(a-b\right)^2=a^2+b^2-2ab=\frac{17}{4}-2=\frac{9}{4}\)\(\Rightarrow a-b=\frac{3}{2}\)

Ta có:

\(a^4-b^4=\left(a^2+b^2\right)\left(a^2-b^2\right)=\frac{17}{4}\left(a-b\right)\left(a+b\right)=\frac{17}{4}.\frac{5}{2}.\frac{3}{2}=\frac{255}{16}\)

\(a^4+b^4=a^4+4a^2b^2+b^4-4a^2b^2\)

\(=\left(a^2+b^2\right)-4a^2b^2\)

\(=\left[\left(a-b\right)^2-2ab\right]^2-4\cdot\left(ab\right)^2\)

\(=\left(1^2-2\cdot12\right)^2-4\cdot12^2\)

\(=\left(1-24\right)^2-4\cdot144\)

\(=\left(-23\right)^2-576=-47\)

NV
27 tháng 7 2021

\(a^2+b^2=\left(a-b\right)^2+2ab=1^2+2.12=25\)

\(a^4+b^4=\left(a^2+b^2\right)-2\left(ab\right)^2=25^2-2.12^2=337\)

17 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)

4 tháng 11 2018

\(a+b=5\Leftrightarrow a^2+2ab+b^2=25\)

\(\Leftrightarrow a^2+2.4+b^2=25\Leftrightarrow a^2+b^2=17\)

\(\Leftrightarrow\left(a^2+b^2\right)^2=289\Leftrightarrow a^4+2\left(ab\right)^2+b^4=289\)

\(\Leftrightarrow a^4+b^4+2.4^2=289\Leftrightarrow a^4+b^4=257\)

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

NV
21 tháng 9 2021

\(a>b>0\Rightarrow a+b>0\)

\(\left(a+b\right)^2=\left(a-b\right)^2+4ab=7^2+4.60=289\Rightarrow a+b=17\)

\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=7.17=119\)

\(a^2+b^2=\left(a-b\right)^2+2ab=7^2+2.60=169\)

\(\Rightarrow a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=169^2-2.60^2=21361\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$

$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$

$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$

\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=7\cdot\sqrt{\left(a-b\right)^2+4ab}\)

\(=7\cdot\sqrt{7^2+4\cdot60}=119\)