Cho p là một số nguyên tố lớn hơn 3. Hỏi p2 là số nguyên tố hay hợp số?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$.
TH1: $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$p^2+2012=(3k+1)^2+2012=9k^2+6k+2013=3(3k^2+2k+671)\vdots 3$
TH2: $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$p^2+2012=(3k+2)^2+2012=9k^2+12k+2016=3(3k^2+4k+672)\vdots 3$
Vậy $p^2+2012$ luôn chia hết cho $3$. Mà $p^2+2012>3$ nên là hợp số.
1. 4p+1 là hợp số
2.p+8 là số nguyên tố
Mọi người tick ủng hộ nhé
là hợp số bạn nha
ví dụ 1:P=5
ta có 5.5+1=26
26 là hợp số
ví dụ 2:P=7
7.5+1=36
36 là hợp số
P2 là nguyên tố