K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)

\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)

\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

7 tháng 1 2023

`1)`

`a)3x^2-6xy+3y^2=3(x^2-2xy+y^2)=3(x-y)^2`

`b)(x-y)^2-4x^2=(x-y-2x)(x-y+2x)=(-x-y)(3x-y)`

`2)`

`a)2x(x-3)-x+3=0`

`<=>2x(x-3)-(x-3)=0`

`<=>(x-3)(2x-1)=0`

`<=>[(x=3),(x=1/2):}`

`b)x^2+5x+6=0`

`<=>x^2+2x+3x+6=0`

`<=>(x+2)(x+3)=0`

`<=>[(x=-2),(x=-3):}`

1 tháng 4 2017

mình tưởng lopw 9 mới học căn

2 tháng 4 2018

em chịu bác lớp 7 học rui

6 tháng 12 2023

\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)

a: \(5x\left(2x+3\right)+6x+9\)

\(=5x\left(2x+3\right)+\left(6x+9\right)\)

\(=5x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)\left(5x+3\right)\)

b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(3x+48+5\right)\)

=(x+4)(3x+53)

 

10 tháng 1 2023

Bài `1:`

`a)3x^3+6x^2=3x^2(x+2)`

`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`

Bài `2:`

`a)(2x-1)^2-25=0`

`<=>(2x-1-5)(2x-1+5)=0`

`<=>(2x-6)(2x+4)=0`

`<=>[(x=3),(x=-2):}`

`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`

`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`

`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`

`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`

14 tháng 10 2020

Đến đây là PT tích r còn gì, \(x\in\left\{5;-10;-\sqrt{3}\right\}\)

14 tháng 10 2020

:v ez mà :) Sửa đề : tìm x 

\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)

TH1 : \(2x-10=0\Leftrightarrow x=5\)

TH2 : \(x+10=0\Leftrightarrow x=-10\)

TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )

Vậy x = 5 ; x = -10 

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

14 tháng 2 2020

\(x\sqrt{x}-3x+4\sqrt{x}-2=x\sqrt{x}-x-2x+2\sqrt{x}+2\sqrt{x}-2\)

\(=x\left(\sqrt{x}-1\right)-2\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)

20 tháng 11 2021

B

26 tháng 12 2022

\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)

\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)