Tính
\(\frac{10^{n+2}}{10^n}-\frac{10^{n+1}}{10^{n+1}}=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\left(10^n+1\right)^2-2.10^n+\left(\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)
\(=\sqrt{\left(10^n+1-\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)
\(=10^n+1-\frac{10^n}{10^n+1}+\frac{10^n}{10^n+1}\left(\text{vì }10^n+1-\frac{10^n}{10^n+1}>0\text{ }\right)\)
\(=10^n+1\)
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
\(u_n-1=\frac{2^n-5^n}{2^n+5^n}-1=\frac{-2.5^n}{2^n+5^n}\Rightarrow\frac{1}{u_n-1}=\frac{2^n+5^n}{-2.5^n}=-\frac{1}{2}\left(\left(\frac{2}{5}\right)^n+1\right)\)
\(\Rightarrow S_{10}=-\frac{1}{2}\left[\frac{2}{5}+\left(\frac{2}{5}\right)^2+...+\left(\frac{2}{5}\right)^{10}+10\right]\)
\(=-\frac{1}{2}\left[\frac{2}{5}.\frac{1-\left(\frac{2}{5}\right)^{10}}{1-\frac{2}{5}}+10\right]=\frac{1}{3}\left(\frac{2}{5}\right)^{10}-\frac{16}{3}\)
hhhhhhhhhhhhhhhhha
bn vừa phải thôi đó Phạm Mai Chi